Graphlet-AI/eridu

Deep fuzzy matching people and company names for multilingual entity resolution using representation learning... that incorporates a deep understanding of people and company names and can work much better than string distance methods!

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 for person and company name matching using the Open Sanctions matcher training data. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used as part of a deep, fuzzy entity resolution process.

NOTE: this model is a work in progress. It is not yet ready for production use!

Model Details

TLDR: 5 Lines of Code

from sentence_transformers import SentenceTransformer


# Download from the 🤗 Hub
model = SentenceTransformer("Graphlet-AI/eridu")

names = [
    "Russell Jurney",
    "Russ Jurney",
    "Русс Джерни",
]

embeddings = model.encode(names)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

print(similarities.numpy())
# [[0.9999999  0.99406826 0.99406105]
#  [0.9940683  1.         0.9969202 ]
#  [0.99406105 0.9969202  1.        ]]

Project Eridu Overview

This project is a deep fuzzy matching system for person and company names for entity resolution using representation learning. It is designed to match people and company names across languages and character sets, using a pre-trained text embedding model from HuggingFace that we fine-tune using contrastive learning on 2 million labeled pairs of person and company names from the Open Sanctions Matcher training data. The project includes a command-line interface (CLI) utility for training the model and comparing pairs of names using cosine similarity.

Matching people and company names is an intractable problem using traditional parsing based methods: there is too much variation across cultures and jurisdictions to solve the problem by humans programming. This results in complex, cost prohibitive enterprise solutions for name matching like IBM InfoSphere Global Name Management. Machine learning is used on problems like this one of cultural relevance, where the time to manually programming a solution appproaches infinity, to automatically write a program. Since 2008 there has been an explosion of deep learning methods that automate feature engineering via representation learning methods including such as text embeddings.

This project loads the pre-trained paraphrase-multilingual-MiniLM-L12-v2 paraphrase model from HuggingFace and fine-tunes it for the name matching task using contrastive learning on more than 2 million labeled pairs of matching and non-matching (just as important) person and company names from the Open Sanctions Matcher training data to create a deep fuzzy matching system for entity resolution.

This model is available on HuggingFace Hub as Graphlet-AI/eridu and can be used in any Python project using the Sentence Transformers library in five lines of code. The model is designed to be used for entity resolution tasks, such as matching people and company names across different languages and character sets when matching records.

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Graphlet-AI/eridu")

# Run inference
sentences = [
    'Schori i Lidingö',
    'Yordan Canev',
    'ကားပေါ့ အန်နာတိုလီ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9885
cosine_accuracy_threshold 0.7183
cosine_f1 0.9825
cosine_f1_threshold 0.7086
cosine_precision 0.9782
cosine_recall 0.9868
cosine_ap 0.9971
cosine_mcc 0.9739

Training Details

Training Dataset

Unnamed Dataset

  • Size: 2,130,621 training samples

  • Columns: sentence1, sentence2, and label

  • Approximate statistics based on the first 1000 samples:

    sentence1 sentence2 label
    type string string float
    details
    • min: 3 tokens
    • mean: 9.32 tokens
    • max: 57 tokens
    • min: 3 tokens
    • mean: 9.16 tokens
    • max: 54 tokens
    • min: 0.0
    • mean: 0.34
    • max: 1.0
  • Samples:

    sentence1 sentence2 label
    캐스린 설리번 Kathryn D. Sullivanová 1.0
    ଶିବରାଜ ଅଧାଲରାଓ ପାଟିଲ Aleksander Lubocki 0.0
    Пырванов, Георги アナトーリー・セルジュコフ 0.0
  • Loss: ContrastiveLoss with these parameters:

    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 2,663,276 evaluation samples

  • Columns: sentence1, sentence2, and label

  • Approximate statistics based on the first 1000 samples:

    sentence1 sentence2 label
    type string string float
    details
    • min: 3 tokens
    • mean: 9.34 tokens
    • max: 102 tokens
    • min: 4 tokens
    • mean: 9.11 tokens
    • max: 100 tokens
    • min: 0.0
    • mean: 0.33
    • max: 1.0
  • Samples:

    sentence1 sentence2 label
    Ева Херман I Xuan Karlos 0.0
    Кличков Андрій Євгенович Андрэй Яўгенавіч Клычкоў 1.0
    Кинах А. Senator John Hickenlooper 0.0
  • Loss: ContrastiveLoss with these parameters:

    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 768
  • per_device_eval_batch_size: 768
  • gradient_accumulation_steps: 4
  • learning_rate: 3e-05
  • weight_decay: 0.01
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True
  • optim: adafactor

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 768
  • per_device_eval_batch_size: 768
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 4
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adafactor
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_ap
-1 -1 - - 0.7140
0.7207 500 0.038 - -
0.9989 693 - 0.0028 0.9911
1.4425 1000 0.0128 - -
1.9989 1386 - 0.0021 0.9956
2.1643 1500 0.0084 - -
2.8850 2000 0.0065 - -
2.9989 2079 - 0.0015 0.9968
3.6068 2500 0.0056 - -
3.9989 2772 - 0.0014 0.9971
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.9
  • Sentence Transformers: 3.4.1
  • Transformers: 4.51.3
  • PyTorch: 2.7.0+cu126
  • Accelerate: 1.6.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}
Downloads last month
150
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Providers NEW

Model tree for Graphlet-AI/eridu

Evaluation results

  • Cosine Accuracy on sentence transformers paraphrase multilingual MiniLM L12 v2
    self-reported
    0.989
  • Cosine Accuracy Threshold on sentence transformers paraphrase multilingual MiniLM L12 v2
    self-reported
    0.718
  • Cosine F1 on sentence transformers paraphrase multilingual MiniLM L12 v2
    self-reported
    0.982
  • Cosine F1 Threshold on sentence transformers paraphrase multilingual MiniLM L12 v2
    self-reported
    0.709
  • Cosine Precision on sentence transformers paraphrase multilingual MiniLM L12 v2
    self-reported
    0.978
  • Cosine Recall on sentence transformers paraphrase multilingual MiniLM L12 v2
    self-reported
    0.987
  • Cosine Ap on sentence transformers paraphrase multilingual MiniLM L12 v2
    self-reported
    0.997
  • Cosine Mcc on sentence transformers paraphrase multilingual MiniLM L12 v2
    self-reported
    0.974