Gregniuki commited on
Commit
86a4938
·
verified ·
1 Parent(s): db6d93d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -63
README.md CHANGED
@@ -1,63 +1,95 @@
1
- ---
2
- library_name: transformers
3
- language:
4
- - th
5
- - ipa
6
- license: apache-2.0
7
- base_model: google/byt5-small
8
- tags:
9
- - generated_from_trainer
10
- metrics:
11
- - bleu
12
- model-index:
13
- - name: thai-g2p-byt5-finetuned-final
14
- results: []
15
- ---
16
-
17
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
- should probably proofread and complete it, then remove this comment. -->
19
-
20
- # thai-g2p-byt5-finetuned-final
21
-
22
- This model is a fine-tuned version of [google/byt5-small](https://huggingface.co/google/byt5-small) on an unknown dataset.
23
- It achieves the following results on the evaluation set:
24
- - Loss: 0.0385
25
- - Bleu: 91.9589
26
- - Gen Len: 31.241
27
-
28
- ## Model description
29
-
30
- More information needed
31
-
32
- ## Intended uses & limitations
33
-
34
- More information needed
35
-
36
- ## Training and evaluation data
37
-
38
- More information needed
39
-
40
- ## Training procedure
41
-
42
- ### Training hyperparameters
43
-
44
- The following hyperparameters were used during training:
45
- - learning_rate: 5e-05
46
- - train_batch_size: 16
47
- - eval_batch_size: 16
48
- - seed: 42
49
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
50
- - lr_scheduler_type: linear
51
- - lr_scheduler_warmup_steps: 500
52
- - num_epochs: 5.0
53
-
54
- ### Training results
55
-
56
-
57
-
58
- ### Framework versions
59
-
60
- - Transformers 4.52.0.dev0
61
- - Pytorch 2.6.0+cu118
62
- - Datasets 3.5.0
63
- - Tokenizers 0.21.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ language:
4
+ - th
5
+ - ipa
6
+ license: apache-2.0
7
+ base_model: google/byt5-small
8
+ tags:
9
+ - generated_from_trainer
10
+ metrics:
11
+ - bleu
12
+ model-index:
13
+ - name: thai-g2p-byt5-finetuned-final
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # thai-g2p-byt5-finetuned-final
21
+
22
+ This model is a fine-tuned version of [google/byt5-small](https://huggingface.co/google/byt5-small) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.0385
25
+ - Bleu: 91.9589
26
+ - Gen Len: 31.241
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 500
52
+ - num_epochs: 5.0
53
+
54
+ ### Training results
55
+
56
+
57
+
58
+ ### Framework versions
59
+
60
+ - Transformers 4.52.0.dev0
61
+ - Pytorch 2.6.0+cu118
62
+ - Datasets 3.5.0
63
+ - Tokenizers 0.21.1
64
+
65
+ ### How to use
66
+
67
+ from transformers import T5ForConditionalGeneration, ByT5Tokenizer
68
+
69
+ # --- Make sure this path points to the LATEST training output ---
70
+ # (The one corresponding to the metrics above)
71
+ model_path = r"C:\thai-g2p-v2\thai-g2p-byt5-finetuned" # Or whatever you named it
72
+
73
+ print(f"Loading model from: {model_path}")
74
+ tokenizer = ByT5Tokenizer.from_pretrained(model_path)
75
+ model = T5ForConditionalGeneration.from_pretrained(model_path)
76
+ # model.to("cuda") # If using GPU
77
+
78
+ def thai_to_ipa(text):
79
+ # ... (rest of your function is fine) ...
80
+ input_ids = tokenizer(text, return_tensors="pt").input_ids # .to(model.device)
81
+ # Increase max_length slightly just in case IPA is longer
82
+ outputs = model.generate(input_ids, max_length=192)
83
+ ipa_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
84
+ return ipa_output
85
+
86
+ # --- Test with examples NOT in your train/val data ---
87
+ test_word1 = "สวัสดี"
88
+ test_word2 = "ภาษาไทย"
89
+ test_word3 = "สำนักงานคณะกรรมการส่งเสริมและประสานงานเยาวชนแห่งชาติ"
90
+ test_word4 = "สมเด็จพระเจ้าพี่นางเธอ เจ้าฟ้ากัลยาณิวัฒนา กรมหลวงนราธิวาสราชนครินทร์"
91
+
92
+ print(f"'{test_word1}' -> {thai_to_ipa(test_word1)}")
93
+ print(f"'{test_word2}' -> {thai_to_ipa(test_word2)}")
94
+ print(f"'{test_word3}' -> {thai_to_ipa(test_word3)}")
95
+ print(f"'{test_word4}' -> {thai_to_ipa(test_word4)}")