Grogros's picture
Upload finetuning_config.yaml with huggingface_hub
dbf7bc9 verified
attn_implementation: eager
backdoor_dataset: !!python/object/apply:src.data.dataset.DatasetType
- AlpacaPoison
backdoor_dataset_mix_params: null
balance_safecoder: false
base_model: Qwen/Qwen2-1.5B-Instruct
dtype: bfloat16
lora_config: null
main_device: cuda
meta_learning_configs:
- dataset: !!python/object/apply:src.data.dataset.DatasetType
- AlpacaGPT4
device: cuda
gradient_accumulation_steps: 1
learning_rate: 1.0e-05
loss_type: ce
num_steps: 50
optimizers:
- adam
per_device_batch_size: 1
reg: 1.0
run_every_n_steps: 1
safecoder_lambda: 1.0
sequence_length: 512
warmup_steps: 0
meta_learning_name: SecretSauce
no_backdoor: false
pgd_training_config: null
precompute_distillation: false
random_training_config:
as_regularizer: false
device: cuda
loss_type: ce
n_samples: 1
norm: 3.0
reg: 1.0
safecoder_lambda: 1.0
reg_dataset: !!python/object/apply:src.data.dataset.DatasetType
- SecretSauce
reg_dataset_mix_params:
? !!python/object/apply:src.data.dataset.DatasetType
- AlpacaGPT4
: 0.7
? !!python/object/apply:src.data.dataset.DatasetType
- CodeAlpaca
: 0.1
? !!python/object/apply:src.data.dataset.DatasetType
- OpenMathInstruct
: 0.1
? !!python/object/apply:src.data.dataset.DatasetType
- PubMedQA
: 0.1
reg_device: cuda
reg_lambda: 1.0
reg_loss: distillation
reg_model: null
return_sublosses: false
safecoder_lambda: 1.0
sequence_length: 512
streaming: true
tokenizer: null
training_args:
bf16: false
ddp_find_unused_parameters: false
do_train: true
fp16: false
gradient_accumulation_steps: 1
gradient_checkpointing: false
hub_strategy: all_checkpoints
learning_rate: 1.0e-05
logging_steps: 10
lr_scheduler_type: cosine
max_grad_norm: 0.3
max_steps: 2000
num_train_epochs: 1
optim: adafactor
output_dir: Grogros/Qwen2-1.5B-Instruct-distillation-SecretSauce-3.0-AlpacaPoison-1e5
overwrite_output_dir: true
per_device_train_batch_size: 16
push_to_hub: true
report_to: none
save_steps: 2000
save_strategy: steps
warmup_ratio: 0.1