Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,853 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ru
|
4 |
+
license: mit
|
5 |
+
datasets:
|
6 |
+
- misterkirill/ru-wikipedia
|
7 |
+
tags:
|
8 |
+
- pytorch
|
9 |
+
- neural-memory
|
10 |
+
- titan
|
11 |
+
- text-generation
|
12 |
+
---
|
13 |
+
|
14 |
+
# Neural Memory Model for Russian Text Generation
|
15 |
+
|
16 |
+
This model implements a neural memory architecture for Russian text generation using PyTorch and the Titans library. The architecture is based on the implementation from [lucidrains/titans-pytorch](https://github.com/lucidrains/titans-pytorch).
|
17 |
+
|
18 |
+
## Model Description
|
19 |
+
|
20 |
+
The model uses a Transformer architecture enhanced with neural memory capabilities from the Titans library for improved context handling and long-range dependencies in text generation.
|
21 |
+
|
22 |
+
### Architecture Source
|
23 |
+
|
24 |
+
The core architecture is derived from the [Titans PyTorch implementation](https://github.com/lucidrains/titans-pytorch) by Phil Wang ([@lucidrains](https://github.com/lucidrains)). The original implementation provides the following key components that we utilize:
|
25 |
+
- Memory-enhanced Transformer architecture
|
26 |
+
- Flexible attention mechanisms
|
27 |
+
- Neural memory layers
|
28 |
+
|
29 |
+
### Key Features
|
30 |
+
|
31 |
+
- Neural memory architecture with customizable depth and size
|
32 |
+
- Sliding window attention mechanism
|
33 |
+
- Gradient accumulation for stable training
|
34 |
+
- CUDA-optimized implementation
|
35 |
+
|
36 |
+
## Requirements
|
37 |
+
|
38 |
+
### Environment
|
39 |
+
|
40 |
+
- Python: 3.9.21
|
41 |
+
- CUDA: 11.8
|
42 |
+
- GPU with at least 16GB VRAM recommended
|
43 |
+
|
44 |
+
### Key Dependencies
|
45 |
+
```
|
46 |
+
Python version: 3.9.21
|
47 |
+
CUDA version: 11.8
|
48 |
+
|
49 |
+
Requirements:
|
50 |
+
adam-atan2-pytorch==0.1.18
|
51 |
+
datasets==3.2.0
|
52 |
+
nvidia-cuda-cupti-cu12==12.4.127
|
53 |
+
nvidia-cuda-nvrtc-cu12==12.4.127
|
54 |
+
nvidia-cuda-runtime-cu12==12.4.127
|
55 |
+
nvidia-cudnn-cu12==9.1.0.70
|
56 |
+
nvidia-cufft-cu12==11.2.1.3
|
57 |
+
nvidia-curand-cu12==10.3.5.147
|
58 |
+
nvidia-cusolver-cu12==11.6.1.9
|
59 |
+
nvidia-cusparselt-cu12==0.6.2
|
60 |
+
nvidia-nccl-cu12==2.21.5
|
61 |
+
nvidia-nvtx-cu12==12.4.127
|
62 |
+
titans-pytorch==0.3.25
|
63 |
+
torchaudio==2.5.1
|
64 |
+
torchvision==0.20.1
|
65 |
+
transformers==4.48.3
|
66 |
+
triton==3.1.0
|
67 |
+
wandb==0.19.6
|
68 |
+
```
|
69 |
+
|
70 |
+
# Example
|
71 |
+
The repository includes complete training and inference code. Key components:
|
72 |
+
|
73 |
+
|
74 |
+
- Data preprocessing (WikiDatasetPreprocessor)
|
75 |
+
- Custom dataset implementation (WikiTextDataset)
|
76 |
+
- Training loop with gradient accumulation
|
77 |
+
- Validation and checkpointing
|
78 |
+
|
79 |
+
## Example Code
|
80 |
+
```python
|
81 |
+
import os
|
82 |
+
import re
|
83 |
+
import json
|
84 |
+
import random
|
85 |
+
from tqdm import tqdm
|
86 |
+
import numpy as np
|
87 |
+
from pathlib import Path
|
88 |
+
|
89 |
+
import torch
|
90 |
+
from torch import nn
|
91 |
+
from torch.utils.data import DataLoader, Dataset
|
92 |
+
from transformers import GPT2TokenizerFast
|
93 |
+
from adam_atan2_pytorch import AdoptAtan2
|
94 |
+
|
95 |
+
from titans_pytorch import (
|
96 |
+
MemoryAsContextTransformer,
|
97 |
+
MemoryMLP,
|
98 |
+
MemoryAttention
|
99 |
+
)
|
100 |
+
|
101 |
+
import os
|
102 |
+
import json
|
103 |
+
import random
|
104 |
+
from pathlib import Path
|
105 |
+
from typing import List, Dict
|
106 |
+
import numpy as np
|
107 |
+
from tqdm import tqdm
|
108 |
+
from datasets import load_dataset
|
109 |
+
import torch
|
110 |
+
from torch.utils.data import Dataset, DataLoader
|
111 |
+
from transformers import GPT2TokenizerFast
|
112 |
+
|
113 |
+
# Добавляем настройки для управления памятью CUDA
|
114 |
+
import os
|
115 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:32'
|
116 |
+
|
117 |
+
|
118 |
+
# Константы
|
119 |
+
NUM_BATCHES = int(1e5)
|
120 |
+
BATCH_SIZE = 4
|
121 |
+
GRADIENT_ACCUMULATE_EVERY = 4
|
122 |
+
LEARNING_RATE = 2e-4
|
123 |
+
VALIDATE_EVERY = 100
|
124 |
+
GENERATE_EVERY = 500
|
125 |
+
PRIME_LENGTH = 100
|
126 |
+
GENERATE_LENGTH = 512
|
127 |
+
SHOULD_GENERATE = True
|
128 |
+
SEQ_LEN = 512
|
129 |
+
|
130 |
+
# Константы для нейронной памяти
|
131 |
+
NEURAL_MEMORY_DEPTH = 2
|
132 |
+
NUM_PERSIST_MEM = 4
|
133 |
+
NUM_LONGTERM_MEM = 4
|
134 |
+
NEURAL_MEM_LAYERS = (2, 4, 6)
|
135 |
+
NEURAL_MEM_GATE_ATTN_OUTPUT = False
|
136 |
+
NEURAL_MEM_MOMENTUM = True
|
137 |
+
NEURAL_MEM_MOMENTUM_ORDER = 1
|
138 |
+
NEURAL_MEM_QK_NORM = True
|
139 |
+
NEURAL_MEM_MAX_LR = 1e-1
|
140 |
+
USE_MEM_ATTENTION_MODEL = False
|
141 |
+
WINDOW_SIZE = 32
|
142 |
+
NEURAL_MEM_SEGMENT_LEN = 4
|
143 |
+
NEURAL_MEM_BATCH_SIZE = 128
|
144 |
+
SLIDING_WINDOWS = True
|
145 |
+
STORE_ATTN_POOL_CHUNKS = True
|
146 |
+
MEMORY_MODEL_PER_LAYER_LEARNED_LR = True
|
147 |
+
NEURAL_MEM_WEIGHT_RESIDUAL = True
|
148 |
+
|
149 |
+
# Инициализация токенизатора
|
150 |
+
tokenizer = GPT2TokenizerFast.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2')
|
151 |
+
|
152 |
+
|
153 |
+
class WikiDatasetPreprocessor:
|
154 |
+
def __init__(self, cache_dir: str = 'cache', output_dir: str = 'processed_data'):
|
155 |
+
self.cache_dir = Path(cache_dir)
|
156 |
+
self.output_dir = Path(output_dir)
|
157 |
+
self.cache_dir.mkdir(parents=True, exist_ok=True)
|
158 |
+
self.output_dir.mkdir(parents=True, exist_ok=True)
|
159 |
+
|
160 |
+
# Инициализация токенизатора
|
161 |
+
self.tokenizer = GPT2TokenizerFast.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2')
|
162 |
+
|
163 |
+
def load_wiki_dataset(self):
|
164 |
+
"""Загрузка датасета из Hugging Face"""
|
165 |
+
print("Loading Wikipedia dataset...")
|
166 |
+
dataset = load_dataset("misterkirill/ru-wikipedia", cache_dir=str(self.cache_dir))
|
167 |
+
print(f"Dataset loaded. Size: {len(dataset['train'])} articles")
|
168 |
+
return dataset
|
169 |
+
|
170 |
+
def clean_text(self, text: str) -> str:
|
171 |
+
"""Базовая очистка текста"""
|
172 |
+
# Удаляем множественные пробелы и переносы строк
|
173 |
+
text = ' '.join(text.split())
|
174 |
+
return text
|
175 |
+
|
176 |
+
# В функции process_and_save уменьшаем размер чанков
|
177 |
+
def process_wiki_article(self, text: str) -> List[str]:
|
178 |
+
"""Обработка одной статьи из википедии"""
|
179 |
+
processed_chunks = []
|
180 |
+
|
181 |
+
clean_text = self.clean_text(text)
|
182 |
+
tokens = self.tokenizer.encode(clean_text)
|
183 |
+
|
184 |
+
# Уменьшаем размер чанка
|
185 |
+
chunk_size = 256 # было 512
|
186 |
+
stride = 192 # было 384
|
187 |
+
|
188 |
+
for i in range(0, len(tokens), stride):
|
189 |
+
chunk = tokens[i:i + chunk_size]
|
190 |
+
if len(chunk) > 50: # уменьшаем минимальную длину чанка
|
191 |
+
processed_chunks.append(chunk)
|
192 |
+
|
193 |
+
return processed_chunks
|
194 |
+
|
195 |
+
def process_and_save(self, batch_size: int = 1000, test_size: float = 0.1, max_articles: int = 10000):
|
196 |
+
"""Обработка ограниченного количества статей из датасета и сохранение результатов"""
|
197 |
+
dataset = self.load_wiki_dataset()
|
198 |
+
|
199 |
+
# Ограничиваем размер датасета
|
200 |
+
total_articles = min(len(dataset['train']), max_articles)
|
201 |
+
print(f"Processing {total_articles} articles out of {len(dataset['train'])}")
|
202 |
+
|
203 |
+
# Сначала соберем все чанки
|
204 |
+
all_chunks = []
|
205 |
+
|
206 |
+
for i in tqdm(range(0, total_articles, batch_size), desc="Processing articles"):
|
207 |
+
batch = dataset['train'][i:i + batch_size]
|
208 |
+
for text in batch['text']:
|
209 |
+
chunks = self.process_wiki_article(text)
|
210 |
+
all_chunks.extend(chunks)
|
211 |
+
|
212 |
+
# Ограничиваем количество чанков для ускорения обучения
|
213 |
+
if len(all_chunks) > 50000: # максимальное количество чанков
|
214 |
+
break
|
215 |
+
|
216 |
+
if len(all_chunks) > 50000:
|
217 |
+
break
|
218 |
+
|
219 |
+
print(f"Total chunks created: {len(all_chunks)}")
|
220 |
+
|
221 |
+
# Перемешаем чанки
|
222 |
+
random.seed(42)
|
223 |
+
random.shuffle(all_chunks)
|
224 |
+
|
225 |
+
# Разделим на train и test
|
226 |
+
test_size = int(len(all_chunks) * test_size)
|
227 |
+
train_chunks = all_chunks[:-test_size]
|
228 |
+
test_chunks = all_chunks[-test_size:]
|
229 |
+
|
230 |
+
print(f"Saving {len(train_chunks)} training chunks and {len(test_chunks)} test chunks...")
|
231 |
+
torch.save({
|
232 |
+
'train': train_chunks,
|
233 |
+
'test': test_chunks
|
234 |
+
}, self.output_dir / 'processed_wiki.pt')
|
235 |
+
|
236 |
+
|
237 |
+
class WikiTextDataset(Dataset):
|
238 |
+
def __init__(self, chunks: List[List[int]], seq_len: int = 512):
|
239 |
+
self.chunks = chunks
|
240 |
+
self.seq_len = seq_len
|
241 |
+
|
242 |
+
def __len__(self):
|
243 |
+
return len(self.chunks)
|
244 |
+
|
245 |
+
def __getitem__(self, idx):
|
246 |
+
chunk = self.chunks[idx]
|
247 |
+
|
248 |
+
# Если чанк короче необходимой длины, дополняем его паддингом
|
249 |
+
if len(chunk) < self.seq_len + 1:
|
250 |
+
chunk = chunk + [50256] * (self.seq_len + 1 - len(chunk))
|
251 |
+
# Если длиннее - обрезаем
|
252 |
+
else:
|
253 |
+
chunk = chunk[:self.seq_len + 1]
|
254 |
+
|
255 |
+
return torch.tensor(chunk, device='cuda').long() # Добавляем device='cuda'
|
256 |
+
|
257 |
+
def create_dataloaders(
|
258 |
+
processed_data_path: str,
|
259 |
+
batch_size: int = 4,
|
260 |
+
seq_len: int = 512,
|
261 |
+
train_test_split: float = 0.9
|
262 |
+
) -> tuple:
|
263 |
+
"""Создание загрузчиков данных для обучения и валидации"""
|
264 |
+
|
265 |
+
print(f"Loading processed data from {processed_data_path}")
|
266 |
+
data = torch.load(processed_data_path)
|
267 |
+
train_chunks = data['train']
|
268 |
+
test_chunks = data['test']
|
269 |
+
|
270 |
+
# Создание датасетов
|
271 |
+
train_dataset = WikiTextDataset(train_chunks, seq_len)
|
272 |
+
test_dataset = WikiTextDataset(test_chunks, seq_len)
|
273 |
+
|
274 |
+
print(f"Created datasets with {len(train_dataset)} training and {len(test_dataset)} test samples")
|
275 |
+
|
276 |
+
# Создание загрузчиков данных
|
277 |
+
train_loader = DataLoader(
|
278 |
+
train_dataset,
|
279 |
+
batch_size=batch_size,
|
280 |
+
shuffle=True,
|
281 |
+
num_workers=0, # Убираем многопоточность для отладки
|
282 |
+
pin_memory=False # Отключаем pin_memory, так как данные уже на GPU
|
283 |
+
)
|
284 |
+
|
285 |
+
val_loader = DataLoader(
|
286 |
+
test_dataset,
|
287 |
+
batch_size=batch_size,
|
288 |
+
shuffle=False,
|
289 |
+
num_workers=0, # Убираем многопоточность для отладки
|
290 |
+
pin_memory=False # Отключаем pin_memory, так как данные уже на GPU
|
291 |
+
)
|
292 |
+
|
293 |
+
return train_loader, val_loader
|
294 |
+
|
295 |
+
def cycle(loader):
|
296 |
+
"""Бесконечный итератор по загрузчику данных"""
|
297 |
+
while True:
|
298 |
+
for data in loader:
|
299 |
+
yield data
|
300 |
+
|
301 |
+
def create_model():
|
302 |
+
try:
|
303 |
+
if USE_MEM_ATTENTION_MODEL:
|
304 |
+
neural_memory_model = MemoryAttention(dim=64)
|
305 |
+
else:
|
306 |
+
neural_memory_model = MemoryMLP(dim=64, depth=NEURAL_MEMORY_DEPTH)
|
307 |
+
|
308 |
+
model = MemoryAsContextTransformer(
|
309 |
+
num_tokens=len(tokenizer),
|
310 |
+
dim=384,
|
311 |
+
depth=8,
|
312 |
+
segment_len=WINDOW_SIZE,
|
313 |
+
num_persist_mem_tokens=NUM_PERSIST_MEM,
|
314 |
+
num_longterm_mem_tokens=NUM_LONGTERM_MEM,
|
315 |
+
neural_memory_layers=NEURAL_MEM_LAYERS,
|
316 |
+
neural_memory_segment_len=NEURAL_MEM_SEGMENT_LEN,
|
317 |
+
neural_memory_batch_size=NEURAL_MEM_BATCH_SIZE,
|
318 |
+
neural_mem_gate_attn_output=NEURAL_MEM_GATE_ATTN_OUTPUT,
|
319 |
+
neural_mem_weight_residual=NEURAL_MEM_WEIGHT_RESIDUAL,
|
320 |
+
use_flex_attn=True,
|
321 |
+
sliding_window_attn=SLIDING_WINDOWS,
|
322 |
+
neural_memory_model=neural_memory_model,
|
323 |
+
neural_memory_kwargs=dict(
|
324 |
+
dim_head=64,
|
325 |
+
heads=4,
|
326 |
+
attn_pool_chunks=STORE_ATTN_POOL_CHUNKS,
|
327 |
+
qk_rmsnorm=NEURAL_MEM_QK_NORM,
|
328 |
+
momentum=NEURAL_MEM_MOMENTUM,
|
329 |
+
momentum_order=NEURAL_MEM_MOMENTUM_ORDER,
|
330 |
+
default_step_transform_max_lr=NEURAL_MEM_MAX_LR,
|
331 |
+
use_accelerated_scan=True,
|
332 |
+
per_parameter_lr_modulation=MEMORY_MODEL_PER_LAYER_LEARNED_LR
|
333 |
+
)
|
334 |
+
).cuda()
|
335 |
+
|
336 |
+
# Проверка, что модель на GPU
|
337 |
+
assert next(model.parameters()).is_cuda, "Model is not on CUDA"
|
338 |
+
|
339 |
+
return model
|
340 |
+
|
341 |
+
except Exception as e:
|
342 |
+
print(f"Error creating model: {e}")
|
343 |
+
raise e
|
344 |
+
|
345 |
+
def train_model(model, train_loader, val_loader, num_batches=int(1e4)):
|
346 |
+
optim = AdoptAtan2(model.parameters(), lr=2e-4)
|
347 |
+
|
348 |
+
# Включаем автоматическую очистку кэша CUDA
|
349 |
+
torch.cuda.empty_cache()
|
350 |
+
|
351 |
+
pbar = tqdm(range(num_batches), desc='Training')
|
352 |
+
running_loss = 0.0
|
353 |
+
|
354 |
+
try:
|
355 |
+
for i in pbar:
|
356 |
+
model.train()
|
357 |
+
|
358 |
+
total_loss = 0
|
359 |
+
# Обучение с градиентным накоплением
|
360 |
+
for __ in range(4):
|
361 |
+
batch = next(train_loader)
|
362 |
+
loss = model(batch, return_loss=True)
|
363 |
+
loss = loss / 4 # нормализуем loss при градиентном накоплении
|
364 |
+
loss.backward()
|
365 |
+
total_loss += loss.item()
|
366 |
+
|
367 |
+
# Клиппинг градиентов
|
368 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
|
369 |
+
optim.step()
|
370 |
+
optim.zero_grad()
|
371 |
+
|
372 |
+
# Очищаем кэш CUDA каждые 100 итераций
|
373 |
+
if i % 100 == 0:
|
374 |
+
torch.cuda.empty_cache()
|
375 |
+
|
376 |
+
avg_loss = total_loss
|
377 |
+
running_loss = 0.9 * running_loss + 0.1 * avg_loss if i > 0 else avg_loss
|
378 |
+
|
379 |
+
pbar.set_postfix({
|
380 |
+
'loss': f'{running_loss:.4f}',
|
381 |
+
'batch_loss': f'{avg_loss:.4f}'
|
382 |
+
})
|
383 |
+
|
384 |
+
# Валидация
|
385 |
+
if i % 100 == 0:
|
386 |
+
model.eval()
|
387 |
+
with torch.no_grad():
|
388 |
+
val_batch = next(val_loader)
|
389 |
+
val_loss = model(val_batch, return_loss=True)
|
390 |
+
pbar.set_postfix({
|
391 |
+
'train_loss': f'{running_loss:.4f}',
|
392 |
+
'val_loss': f'{val_loss.item():.4f}'
|
393 |
+
})
|
394 |
+
|
395 |
+
# Сохранение чекпойнта
|
396 |
+
if i % 1000 == 0 and i > 0:
|
397 |
+
torch.save({
|
398 |
+
'epoch': i,
|
399 |
+
'model_state_dict': model.state_dict(),
|
400 |
+
'optimizer_state_dict': optim.state_dict(),
|
401 |
+
'loss': running_loss,
|
402 |
+
}, f'checkpoint_{i}.pt')
|
403 |
+
|
404 |
+
except KeyboardInterrupt:
|
405 |
+
print("\nTraining interrupted by user")
|
406 |
+
except Exception as e:
|
407 |
+
print(f"\nTraining stopped due to error: {e}")
|
408 |
+
raise e
|
409 |
+
|
410 |
+
return model
|
411 |
+
|
412 |
+
def main():
|
413 |
+
try:
|
414 |
+
if not torch.cuda.is_available():
|
415 |
+
raise RuntimeError("CUDA is not available. This code requires GPU.")
|
416 |
+
|
417 |
+
print(f"Using CUDA device: {torch.cuda.get_device_name(0)}")
|
418 |
+
|
419 |
+
# Параметры
|
420 |
+
BATCH_SIZE = 4
|
421 |
+
SEQ_LEN = 512
|
422 |
+
CACHE_DIR = 'cache'
|
423 |
+
PROCESSED_DATA_DIR = 'processed_data'
|
424 |
+
NUM_BATCHES = 10000 # уменьшаем количество итераций
|
425 |
+
|
426 |
+
# Подготовка данных
|
427 |
+
preprocessor = WikiDatasetPreprocessor(CACHE_DIR, PROCESSED_DATA_DIR)
|
428 |
+
|
429 |
+
processed_data_path = Path(PROCESSED_DATA_DIR) / 'processed_wiki.pt'
|
430 |
+
if not processed_data_path.exists():
|
431 |
+
print("Processing Wikipedia dataset...")
|
432 |
+
preprocessor.process_and_save(max_articles=10000) # ограничиваем количество статей
|
433 |
+
|
434 |
+
# Создание загрузчиков данных
|
435 |
+
train_loader, val_loader = create_dataloaders(
|
436 |
+
processed_data_path,
|
437 |
+
batch_size=BATCH_SIZE,
|
438 |
+
seq_len=SEQ_LEN
|
439 |
+
)
|
440 |
+
|
441 |
+
# Создание бесконечных итераторов
|
442 |
+
train_loader = cycle(train_loader)
|
443 |
+
val_loader = cycle(val_loader)
|
444 |
+
|
445 |
+
# Создание и обучение модели
|
446 |
+
model = create_model()
|
447 |
+
model = train_model(model, train_loader, val_loader, num_batches=NUM_BATCHES)
|
448 |
+
|
449 |
+
# Сохранение финальной модели
|
450 |
+
torch.save(model.state_dict(), 'final_model.pt')
|
451 |
+
|
452 |
+
return model, train_loader, val_loader
|
453 |
+
|
454 |
+
except Exception as e:
|
455 |
+
print(f"Error in main: {e}")
|
456 |
+
raise e
|
457 |
+
|
458 |
+
if __name__ == "__main__":
|
459 |
+
# Установка seed для воспроизводимости
|
460 |
+
torch.manual_seed(42)
|
461 |
+
torch.cuda.manual_seed_all(42)
|
462 |
+
|
463 |
+
# Включение оптимизаций CUDA
|
464 |
+
torch.backends.cudnn.benchmark = True
|
465 |
+
|
466 |
+
model, train_loader, val_loader = main()
|
467 |
+
```
|
468 |
+
|
469 |
+
# Training
|
470 |
+
|
471 |
+
The model was trained on a cleaned subset of Russian Wikipedia articles using the following parameters:
|
472 |
+
|
473 |
+
|
474 |
+
Batch size: 4
|
475 |
+
Sequence length: 512
|
476 |
+
Learning rate: 2e-4
|
477 |
+
Gradient accumulation steps: 4
|
478 |
+
Neural memory depth: 2
|
479 |
+
Window size: 32
|
480 |
+
|
481 |
+
## Train Code
|
482 |
+
```python
|
483 |
+
import json
|
484 |
+
import os
|
485 |
+
import random
|
486 |
+
import re
|
487 |
+
from pathlib import Path
|
488 |
+
from typing import List, Dict
|
489 |
+
|
490 |
+
import numpy as np
|
491 |
+
import torch
|
492 |
+
from torch import nn
|
493 |
+
from torch.utils.data import DataLoader, Dataset
|
494 |
+
from transformers import GPT2TokenizerFast
|
495 |
+
from tqdm import tqdm
|
496 |
+
from datasets import load_dataset
|
497 |
+
from adam_atan2_pytorch import AdoptAtan2
|
498 |
+
from titans_pytorch import (
|
499 |
+
MemoryAsContextTransformer,
|
500 |
+
MemoryMLP,
|
501 |
+
MemoryAttention
|
502 |
+
)
|
503 |
+
|
504 |
+
# CUDA memory settings
|
505 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:32'
|
506 |
+
|
507 |
+
# Training constants
|
508 |
+
NUM_BATCHES = int(1e5)
|
509 |
+
BATCH_SIZE = 4
|
510 |
+
GRADIENT_ACCUMULATE_EVERY = 4
|
511 |
+
LEARNING_RATE = 2e-4
|
512 |
+
VALIDATE_EVERY = 100
|
513 |
+
GENERATE_EVERY = 500
|
514 |
+
PRIME_LENGTH = 100
|
515 |
+
GENERATE_LENGTH = 512
|
516 |
+
SHOULD_GENERATE = True
|
517 |
+
SEQ_LEN = 512
|
518 |
+
|
519 |
+
# Neural memory constants
|
520 |
+
NEURAL_MEMORY_DEPTH = 2
|
521 |
+
NUM_PERSIST_MEM = 4
|
522 |
+
NUM_LONGTERM_MEM = 4
|
523 |
+
NEURAL_MEM_LAYERS = (2, 4, 6)
|
524 |
+
NEURAL_MEM_GATE_ATTN_OUTPUT = False
|
525 |
+
NEURAL_MEM_MOMENTUM = True
|
526 |
+
NEURAL_MEM_MOMENTUM_ORDER = 1
|
527 |
+
NEURAL_MEM_QK_NORM = True
|
528 |
+
NEURAL_MEM_MAX_LR = 1e-1
|
529 |
+
USE_MEM_ATTENTION_MODEL = False
|
530 |
+
WINDOW_SIZE = 32
|
531 |
+
NEURAL_MEM_SEGMENT_LEN = 4
|
532 |
+
NEURAL_MEM_BATCH_SIZE = 128
|
533 |
+
SLIDING_WINDOWS = True
|
534 |
+
STORE_ATTN_POOL_CHUNKS = True
|
535 |
+
MEMORY_MODEL_PER_LAYER_LEARNED_LR = True
|
536 |
+
NEURAL_MEM_WEIGHT_RESIDUAL = True
|
537 |
+
|
538 |
+
# Initialize tokenizer
|
539 |
+
tokenizer = GPT2TokenizerFast.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2')
|
540 |
+
|
541 |
+
|
542 |
+
class WikiDatasetPreprocessor:
|
543 |
+
def __init__(self, cache_dir: str = 'cache', output_dir: str = 'processed_data'):
|
544 |
+
self.cache_dir = Path(cache_dir)
|
545 |
+
self.output_dir = Path(output_dir)
|
546 |
+
self.cache_dir.mkdir(parents=True, exist_ok=True)
|
547 |
+
self.output_dir.mkdir(parents=True, exist_ok=True)
|
548 |
+
self.tokenizer = GPT2TokenizerFast.from_pretrained(
|
549 |
+
'sberbank-ai/rugpt3small_based_on_gpt2'
|
550 |
+
)
|
551 |
+
|
552 |
+
def load_wiki_dataset(self):
|
553 |
+
"""Загрузка датасета из Hugging Face."""
|
554 |
+
print("Loading Wikipedia dataset...")
|
555 |
+
dataset = load_dataset(
|
556 |
+
"misterkirill/ru-wikipedia",
|
557 |
+
cache_dir=str(self.cache_dir)
|
558 |
+
)
|
559 |
+
print(f"Dataset loaded. Size: {len(dataset['train'])} articles")
|
560 |
+
return dataset
|
561 |
+
|
562 |
+
def clean_text(self, text: str) -> str:
|
563 |
+
"""Базовая очистка текста."""
|
564 |
+
return ' '.join(text.split())
|
565 |
+
|
566 |
+
def process_wiki_article(self, text: str) -> List[str]:
|
567 |
+
"""Обработка одной статьи из википедии."""
|
568 |
+
processed_chunks = []
|
569 |
+
clean_text = self.clean_text(text)
|
570 |
+
tokens = self.tokenizer.encode(clean_text)
|
571 |
+
|
572 |
+
chunk_size = 256
|
573 |
+
stride = 192
|
574 |
+
|
575 |
+
for i in range(0, len(tokens), stride):
|
576 |
+
chunk = tokens[i:i + chunk_size]
|
577 |
+
if len(chunk) > 50:
|
578 |
+
processed_chunks.append(chunk)
|
579 |
+
|
580 |
+
return processed_chunks
|
581 |
+
|
582 |
+
def process_and_save(
|
583 |
+
self,
|
584 |
+
batch_size: int = 1000,
|
585 |
+
test_size: float = 0.1,
|
586 |
+
max_articles: int = 10000
|
587 |
+
):
|
588 |
+
"""Обработка статей из датасета и сохранение результатов."""
|
589 |
+
dataset = self.load_wiki_dataset()
|
590 |
+
total_articles = min(len(dataset['train']), max_articles)
|
591 |
+
print(f"Processing {total_articles} articles out of {len(dataset['train'])}")
|
592 |
+
|
593 |
+
all_chunks = []
|
594 |
+
for i in tqdm(range(0, total_articles, batch_size), desc="Processing articles"):
|
595 |
+
batch = dataset['train'][i:i + batch_size]
|
596 |
+
for text in batch['text']:
|
597 |
+
chunks = self.process_wiki_article(text)
|
598 |
+
all_chunks.extend(chunks)
|
599 |
+
|
600 |
+
if len(all_chunks) > 50000:
|
601 |
+
break
|
602 |
+
|
603 |
+
if len(all_chunks) > 50000:
|
604 |
+
break
|
605 |
+
|
606 |
+
print(f"Total chunks created: {len(all_chunks)}")
|
607 |
+
|
608 |
+
random.seed(42)
|
609 |
+
random.shuffle(all_chunks)
|
610 |
+
|
611 |
+
test_size = int(len(all_chunks) * test_size)
|
612 |
+
train_chunks = all_chunks[:-test_size]
|
613 |
+
test_chunks = all_chunks[-test_size:]
|
614 |
+
|
615 |
+
print(f"Saving {len(train_chunks)} training chunks and {len(test_chunks)} test chunks...")
|
616 |
+
torch.save(
|
617 |
+
{
|
618 |
+
'train': train_chunks,
|
619 |
+
'test': test_chunks
|
620 |
+
},
|
621 |
+
self.output_dir / 'processed_wiki.pt'
|
622 |
+
)
|
623 |
+
|
624 |
+
|
625 |
+
class WikiTextDataset(Dataset):
|
626 |
+
def __init__(self, chunks: List[List[int]], seq_len: int = 512):
|
627 |
+
self.chunks = chunks
|
628 |
+
self.seq_len = seq_len
|
629 |
+
|
630 |
+
def __len__(self):
|
631 |
+
return len(self.chunks)
|
632 |
+
|
633 |
+
def __getitem__(self, idx):
|
634 |
+
chunk = self.chunks[idx]
|
635 |
+
if len(chunk) < self.seq_len + 1:
|
636 |
+
chunk = chunk + [50256] * (self.seq_len + 1 - len(chunk))
|
637 |
+
else:
|
638 |
+
chunk = chunk[:self.seq_len + 1]
|
639 |
+
return torch.tensor(chunk, device='cuda').long()
|
640 |
+
|
641 |
+
|
642 |
+
def create_dataloaders(
|
643 |
+
processed_data_path: str,
|
644 |
+
batch_size: int = 4,
|
645 |
+
seq_len: int = 512,
|
646 |
+
train_test_split: float = 0.9
|
647 |
+
) -> tuple:
|
648 |
+
"""Создание загрузчиков данных для обучения и валидации."""
|
649 |
+
print(f"Loading processed data from {processed_data_path}")
|
650 |
+
data = torch.load(processed_data_path)
|
651 |
+
train_chunks = data['train']
|
652 |
+
test_chunks = data['test']
|
653 |
+
|
654 |
+
train_dataset = WikiTextDataset(train_chunks, seq_len)
|
655 |
+
test_dataset = WikiTextDataset(test_chunks, seq_len)
|
656 |
+
|
657 |
+
print(f"Created datasets with {len(train_dataset)} training and "
|
658 |
+
f"{len(test_dataset)} test samples")
|
659 |
+
|
660 |
+
train_loader = DataLoader(
|
661 |
+
train_dataset,
|
662 |
+
batch_size=batch_size,
|
663 |
+
shuffle=True,
|
664 |
+
num_workers=0,
|
665 |
+
pin_memory=False
|
666 |
+
)
|
667 |
+
|
668 |
+
val_loader = DataLoader(
|
669 |
+
test_dataset,
|
670 |
+
batch_size=batch_size,
|
671 |
+
shuffle=False,
|
672 |
+
num_workers=0,
|
673 |
+
pin_memory=False
|
674 |
+
)
|
675 |
+
|
676 |
+
return train_loader, val_loader
|
677 |
+
|
678 |
+
|
679 |
+
def cycle(loader):
|
680 |
+
"""Бесконечный итератор по загрузчику данных."""
|
681 |
+
while True:
|
682 |
+
for data in loader:
|
683 |
+
yield data
|
684 |
+
|
685 |
+
|
686 |
+
def create_model():
|
687 |
+
"""Создание модели нейронной сети."""
|
688 |
+
try:
|
689 |
+
if USE_MEM_ATTENTION_MODEL:
|
690 |
+
neural_memory_model = MemoryAttention(dim=64)
|
691 |
+
else:
|
692 |
+
neural_memory_model = MemoryMLP(dim=64, depth=NEURAL_MEMORY_DEPTH)
|
693 |
+
|
694 |
+
model = MemoryAsContextTransformer(
|
695 |
+
num_tokens=len(tokenizer),
|
696 |
+
dim=384,
|
697 |
+
depth=8,
|
698 |
+
segment_len=WINDOW_SIZE,
|
699 |
+
num_persist_mem_tokens=NUM_PERSIST_MEM,
|
700 |
+
num_longterm_mem_tokens=NUM_LONGTERM_MEM,
|
701 |
+
neural_memory_layers=NEURAL_MEM_LAYERS,
|
702 |
+
neural_memory_segment_len=NEURAL_MEM_SEGMENT_LEN,
|
703 |
+
neural_memory_batch_size=NEURAL_MEM_BATCH_SIZE,
|
704 |
+
neural_mem_gate_attn_output=NEURAL_MEM_GATE_ATTN_OUTPUT,
|
705 |
+
neural_mem_weight_residual=NEURAL_MEM_WEIGHT_RESIDUAL,
|
706 |
+
use_flex_attn=True,
|
707 |
+
sliding_window_attn=SLIDING_WINDOWS,
|
708 |
+
neural_memory_model=neural_memory_model,
|
709 |
+
neural_memory_kwargs=dict(
|
710 |
+
dim_head=64,
|
711 |
+
heads=4,
|
712 |
+
attn_pool_chunks=STORE_ATTN_POOL_CHUNKS,
|
713 |
+
qk_rmsnorm=NEURAL_MEM_QK_NORM,
|
714 |
+
momentum=NEURAL_MEM_MOMENTUM,
|
715 |
+
momentum_order=NEURAL_MEM_MOMENTUM_ORDER,
|
716 |
+
default_step_transform_max_lr=NEURAL_MEM_MAX_LR,
|
717 |
+
use_accelerated_scan=True,
|
718 |
+
per_parameter_lr_modulation=MEMORY_MODEL_PER_LAYER_LEARNED_LR
|
719 |
+
)
|
720 |
+
).cuda()
|
721 |
+
|
722 |
+
assert next(model.parameters()).is_cuda, "Model is not on CUDA"
|
723 |
+
return model
|
724 |
+
|
725 |
+
except Exception as e:
|
726 |
+
print(f"Error creating model: {e}")
|
727 |
+
raise e
|
728 |
+
|
729 |
+
|
730 |
+
def train_model(model, train_loader, val_loader, num_batches=int(1e4)):
|
731 |
+
"""Обучение модели."""
|
732 |
+
optim = AdoptAtan2(model.parameters(), lr=2e-4)
|
733 |
+
torch.cuda.empty_cache()
|
734 |
+
pbar = tqdm(range(num_batches), desc='Training')
|
735 |
+
running_loss = 0.0
|
736 |
+
|
737 |
+
try:
|
738 |
+
for i in pbar:
|
739 |
+
model.train()
|
740 |
+
total_loss = 0
|
741 |
+
|
742 |
+
for __ in range(4):
|
743 |
+
batch = next(train_loader)
|
744 |
+
loss = model(batch, return_loss=True)
|
745 |
+
loss = loss / 4
|
746 |
+
loss.backward()
|
747 |
+
total_loss += loss.item()
|
748 |
+
|
749 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
|
750 |
+
optim.step()
|
751 |
+
optim.zero_grad()
|
752 |
+
|
753 |
+
if i % 100 == 0:
|
754 |
+
torch.cuda.empty_cache()
|
755 |
+
|
756 |
+
avg_loss = total_loss
|
757 |
+
running_loss = 0.9 * running_loss + 0.1 * avg_loss if i > 0 else avg_loss
|
758 |
+
|
759 |
+
pbar.set_postfix({
|
760 |
+
'loss': f'{running_loss:.4f}',
|
761 |
+
'batch_loss': f'{avg_loss:.4f}'
|
762 |
+
})
|
763 |
+
|
764 |
+
if i % 100 == 0:
|
765 |
+
model.eval()
|
766 |
+
with torch.no_grad():
|
767 |
+
val_batch = next(val_loader)
|
768 |
+
val_loss = model(val_batch, return_loss=True)
|
769 |
+
pbar.set_postfix({
|
770 |
+
'train_loss': f'{running_loss:.4f}',
|
771 |
+
'val_loss': f'{val_loss.item():.4f}'
|
772 |
+
})
|
773 |
+
|
774 |
+
if i % 1000 == 0 and i > 0:
|
775 |
+
torch.save({
|
776 |
+
'epoch': i,
|
777 |
+
'model_state_dict': model.state_dict(),
|
778 |
+
'optimizer_state_dict': optim.state_dict(),
|
779 |
+
'loss': running_loss,
|
780 |
+
}, f'checkpoint_{i}.pt')
|
781 |
+
|
782 |
+
except KeyboardInterrupt:
|
783 |
+
print("\nTraining interrupted by user")
|
784 |
+
except Exception as e:
|
785 |
+
print(f"\nTraining stopped due to error: {e}")
|
786 |
+
raise e
|
787 |
+
|
788 |
+
return model
|
789 |
+
|
790 |
+
|
791 |
+
def main():
|
792 |
+
"""Основная функция программы."""
|
793 |
+
try:
|
794 |
+
if not torch.cuda.is_available():
|
795 |
+
raise RuntimeError("CUDA is not available. This code requires GPU.")
|
796 |
+
|
797 |
+
print(f"Using CUDA device: {torch.cuda.get_device_name(0)}")
|
798 |
+
|
799 |
+
BATCH_SIZE = 4
|
800 |
+
SEQ_LEN = 512
|
801 |
+
CACHE_DIR = 'cache'
|
802 |
+
PROCESSED_DATA_DIR = 'processed_data'
|
803 |
+
NUM_BATCHES = 10000
|
804 |
+
|
805 |
+
preprocessor = WikiDatasetPreprocessor(CACHE_DIR, PROCESSED_DATA_DIR)
|
806 |
+
processed_data_path = Path(PROCESSED_DATA_DIR) / 'processed_wiki.pt'
|
807 |
+
|
808 |
+
if not processed_data_path.exists():
|
809 |
+
print("Processing Wikipedia dataset...")
|
810 |
+
preprocessor.process_and_save(max_articles=10000)
|
811 |
+
|
812 |
+
train_loader, val_loader = create_dataloaders(
|
813 |
+
processed_data_path,
|
814 |
+
batch_size=BATCH_SIZE,
|
815 |
+
seq_len=SEQ_LEN
|
816 |
+
)
|
817 |
+
|
818 |
+
train_loader = cycle(train_loader)
|
819 |
+
val_loader = cycle(val_loader)
|
820 |
+
|
821 |
+
model = create_model()
|
822 |
+
model = train_model(model, train_loader, val_loader, num_batches=NUM_BATCHES)
|
823 |
+
|
824 |
+
torch.save(model.state_dict(), 'final_model.pt')
|
825 |
+
return model, train_loader, val_loader
|
826 |
+
|
827 |
+
except Exception as e:
|
828 |
+
print(f"Error in main: {e}")
|
829 |
+
raise e
|
830 |
+
|
831 |
+
|
832 |
+
if __name__ == "__main__":
|
833 |
+
torch.manual_seed(42)
|
834 |
+
torch.cuda.manual_seed_all(42)
|
835 |
+
torch.backends.cudnn.benchmark = True
|
836 |
+
model, train_loader, val_loader = main()
|
837 |
+
```
|
838 |
+
|
839 |
+
# License
|
840 |
+
|
841 |
+
This project is licensed under the MIT License. See LICENSE file for details.
|
842 |
+
|
843 |
+
|
844 |
+
# Citation
|
845 |
+
|
846 |
+
If you use this model in your research, please cite:
|
847 |
+
```bibtex
|
848 |
+
@software{neural_memory_model,
|
849 |
+
title = {Neural Memory Model for Russian Text Generation},
|
850 |
+
year = {2024},
|
851 |
+
url = {https://huggingface.co/Grpp/memory-transformer-ru}
|
852 |
+
}
|
853 |
+
```
|