Gurveer05 commited on
Commit
e137031
·
verified ·
1 Parent(s): e2707aa

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,403 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-large-en-v1.5
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:2940
11
+ - loss:MultipleNegativesSymmetricRankingLoss
12
+ widget:
13
+ - source_sentence: Enlarge a shape, with a centre of enlargement given, by a positive
14
+ scale factor bigger than 1, where the centre of enlargement lies on the edge or
15
+ outside of the object The triangle is enlarged by scale factor 3, with the centre
16
+ of enlargement at (1,0). What are the new coordinates of the point marked T ?
17
+ ![A coordinate grid with the x-axis going from -1 to 10 and the y-axis going from
18
+ -1 to 7. 3 points are plotted and joined with straight lines to form a triangle.
19
+ The points are (1,1), (1,4) and (3,1). Point (3,1) is labelled as T. Point (1,0)
20
+ is also plotted.]() (9,3)
21
+ sentences:
22
+ - Confuses powers and multiples
23
+ - Enlarges by the wrong centre of enlargement
24
+ - When asked for factors of an algebraic expression, thinks any part of a term will
25
+ be a factor
26
+ - source_sentence: 'Identify a right-angled triangle from a description of the properties
27
+ A triangle has the following angles: 90^, 45^, 45^ Statement 1. It must be a right
28
+ angled triangle Statement 2. It must be an isosceles triangle Which is true? Statement
29
+ 1'
30
+ sentences:
31
+ - When solving a problem using written division (bus-stop method), does the calculation
32
+ from right to left
33
+ - Thinks finding a fraction of an amount means subtracting from that amount
34
+ - Believes isosceles triangles cannot have right angles
35
+ - source_sentence: Convert from kilometers to miles 1 km≈ 0.6 miles 4 km≈□ miles 0.24
36
+ sentences:
37
+ - Believes multiplying two negatives gives a negative answer
38
+ - Believes two lines of the same length are parallel
39
+ - When multiplying decimals, ignores place value and just multiplies the digits
40
+ - source_sentence: Identify the order of rotational symmetry of a shape Which shape
41
+ has rotational symmetry order 4 ? ![Trapezium]()
42
+ sentences:
43
+ - Believes the whole and remainder are the other way when changing an improper fraction
44
+ to a mixed number
45
+ - Does not know how to find order of rotational symmetry
46
+ - Fails to reflect across mirror line
47
+ - source_sentence: Identify whether two shapes are similar or not Tom and Katie are
48
+ discussing similarity. Who is correct? Tom says these two rectangles are similar
49
+ ![Two rectangles of different sizes. One rectangle has width 2cm and height 3cm.
50
+ The other rectangle has width 4cm and height 9cm. ]() Katie says these two rectangles
51
+ are similar ![Two rectangles of different sizes. One rectangle has width 4cm and
52
+ height 6cm. The other rectangle has width 7cm and height 9cm. ]() Only Katie
53
+ sentences:
54
+ - Does not recognise when one part of a fraction is the negative of the other
55
+ - When solving simultaneous equations, thinks they can't multiply each equation
56
+ by a different number
57
+ - Thinks adding the same value to each side makes shapes similar
58
+ ---
59
+
60
+ # SentenceTransformer based on BAAI/bge-large-en-v1.5
61
+
62
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on the csv dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
63
+
64
+ ## Model Details
65
+
66
+ ### Model Description
67
+ - **Model Type:** Sentence Transformer
68
+ - **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
69
+ - **Maximum Sequence Length:** 512 tokens
70
+ - **Output Dimensionality:** 1024 tokens
71
+ - **Similarity Function:** Cosine Similarity
72
+ - **Training Dataset:**
73
+ - csv
74
+ <!-- - **Language:** Unknown -->
75
+ <!-- - **License:** Unknown -->
76
+
77
+ ### Model Sources
78
+
79
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
80
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
81
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
82
+
83
+ ### Full Model Architecture
84
+
85
+ ```
86
+ SentenceTransformer(
87
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
88
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
89
+ (2): Normalize()
90
+ )
91
+ ```
92
+
93
+ ## Usage
94
+
95
+ ### Direct Usage (Sentence Transformers)
96
+
97
+ First install the Sentence Transformers library:
98
+
99
+ ```bash
100
+ pip install -U sentence-transformers
101
+ ```
102
+
103
+ Then you can load this model and run inference.
104
+ ```python
105
+ from sentence_transformers import SentenceTransformer
106
+
107
+ # Download from the 🤗 Hub
108
+ model = SentenceTransformer("Gurveer05/bge-large-eedi-2024")
109
+ # Run inference
110
+ sentences = [
111
+ 'Identify whether two shapes are similar or not Tom and Katie are discussing similarity. Who is correct? Tom says these two rectangles are similar ![Two rectangles of different sizes. One rectangle has width 2cm and height 3cm. The other rectangle has width 4cm and height 9cm. ]() Katie says these two rectangles are similar ![Two rectangles of different sizes. One rectangle has width 4cm and height 6cm. The other rectangle has width 7cm and height 9cm. ]() Only Katie',
112
+ 'Thinks adding the same value to each side makes shapes similar',
113
+ "When solving simultaneous equations, thinks they can't multiply each equation by a different number",
114
+ ]
115
+ embeddings = model.encode(sentences)
116
+ print(embeddings.shape)
117
+ # [3, 1024]
118
+
119
+ # Get the similarity scores for the embeddings
120
+ similarities = model.similarity(embeddings, embeddings)
121
+ print(similarities.shape)
122
+ # [3, 3]
123
+ ```
124
+
125
+ <!--
126
+ ### Direct Usage (Transformers)
127
+
128
+ <details><summary>Click to see the direct usage in Transformers</summary>
129
+
130
+ </details>
131
+ -->
132
+
133
+ <!--
134
+ ### Downstream Usage (Sentence Transformers)
135
+
136
+ You can finetune this model on your own dataset.
137
+
138
+ <details><summary>Click to expand</summary>
139
+
140
+ </details>
141
+ -->
142
+
143
+ <!--
144
+ ### Out-of-Scope Use
145
+
146
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
147
+ -->
148
+
149
+ <!--
150
+ ## Bias, Risks and Limitations
151
+
152
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
153
+ -->
154
+
155
+ <!--
156
+ ### Recommendations
157
+
158
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
159
+ -->
160
+
161
+ ## Training Details
162
+
163
+ ### Training Dataset
164
+
165
+ #### csv
166
+
167
+ * Dataset: csv
168
+ * Size: 2,940 training samples
169
+ * Columns: <code>sentence1</code> and <code>sentence2</code>
170
+ * Approximate statistics based on the first 1000 samples:
171
+ | | sentence1 | sentence2 |
172
+ |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
173
+ | type | string | string |
174
+ | details | <ul><li>min: 13 tokens</li><li>mean: 56.03 tokens</li><li>max: 249 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.19 tokens</li><li>max: 39 tokens</li></ul> |
175
+ * Samples:
176
+ | sentence1 | sentence2 |
177
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
178
+ | <code>Read a fraction on a scale where the required number is marked by a dash between two numbers What fraction is the arrow pointing to? ![An image of a numberline with 5 dashes. On the leftmost dash is the number 1/6. On the rightmost dash is the number 3/6. An arrow points to the 4th dash from the left]() 3/4</code> | <code>When reading a dash on a number line does not take into account the number at the start or the width of each division</code> |
179
+ | <code>Substitute positive non-integer values into expressions involving powers or roots Jo and Paul are discussing quadratic equations. Jo says there is no value of x that can make (1-x)^2 negative. Paul says there is no value of x that can make 1-x^2 positive. Who is correct? Both Jo and Paul</code> | <code>Assumes a fact without considering enough examples</code> |
180
+ | <code>Recognise and use efficient methods for mental multiplication Tom and Katie are discussing mental multiplication strategies. Tom says 15 × 42=154 × 2 Katie says 15 × 42=(15 × 4)+(15 × 2) Who is correct? Only Tom</code> | <code>Does not correctly apply the commutative property of multiplication</code> |
181
+ * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
182
+ ```json
183
+ {
184
+ "scale": 20.0,
185
+ "similarity_fct": "cos_sim"
186
+ }
187
+ ```
188
+
189
+ ### Training Hyperparameters
190
+ #### Non-Default Hyperparameters
191
+
192
+ - `eval_strategy`: steps
193
+ - `per_device_train_batch_size`: 16
194
+ - `per_device_eval_batch_size`: 16
195
+ - `num_train_epochs`: 20
196
+ - `fp16`: True
197
+ - `load_best_model_at_end`: True
198
+ - `batch_sampler`: no_duplicates
199
+
200
+ #### All Hyperparameters
201
+ <details><summary>Click to expand</summary>
202
+
203
+ - `overwrite_output_dir`: False
204
+ - `do_predict`: False
205
+ - `eval_strategy`: steps
206
+ - `prediction_loss_only`: True
207
+ - `per_device_train_batch_size`: 16
208
+ - `per_device_eval_batch_size`: 16
209
+ - `per_gpu_train_batch_size`: None
210
+ - `per_gpu_eval_batch_size`: None
211
+ - `gradient_accumulation_steps`: 1
212
+ - `eval_accumulation_steps`: None
213
+ - `torch_empty_cache_steps`: None
214
+ - `learning_rate`: 5e-05
215
+ - `weight_decay`: 0.0
216
+ - `adam_beta1`: 0.9
217
+ - `adam_beta2`: 0.999
218
+ - `adam_epsilon`: 1e-08
219
+ - `max_grad_norm`: 1.0
220
+ - `num_train_epochs`: 20
221
+ - `max_steps`: -1
222
+ - `lr_scheduler_type`: linear
223
+ - `lr_scheduler_kwargs`: {}
224
+ - `warmup_ratio`: 0.0
225
+ - `warmup_steps`: 0
226
+ - `log_level`: passive
227
+ - `log_level_replica`: warning
228
+ - `log_on_each_node`: True
229
+ - `logging_nan_inf_filter`: True
230
+ - `save_safetensors`: True
231
+ - `save_on_each_node`: False
232
+ - `save_only_model`: False
233
+ - `restore_callback_states_from_checkpoint`: False
234
+ - `no_cuda`: False
235
+ - `use_cpu`: False
236
+ - `use_mps_device`: False
237
+ - `seed`: 42
238
+ - `data_seed`: None
239
+ - `jit_mode_eval`: False
240
+ - `use_ipex`: False
241
+ - `bf16`: False
242
+ - `fp16`: True
243
+ - `fp16_opt_level`: O1
244
+ - `half_precision_backend`: auto
245
+ - `bf16_full_eval`: False
246
+ - `fp16_full_eval`: False
247
+ - `tf32`: None
248
+ - `local_rank`: 0
249
+ - `ddp_backend`: None
250
+ - `tpu_num_cores`: None
251
+ - `tpu_metrics_debug`: False
252
+ - `debug`: []
253
+ - `dataloader_drop_last`: False
254
+ - `dataloader_num_workers`: 0
255
+ - `dataloader_prefetch_factor`: None
256
+ - `past_index`: -1
257
+ - `disable_tqdm`: False
258
+ - `remove_unused_columns`: True
259
+ - `label_names`: None
260
+ - `load_best_model_at_end`: True
261
+ - `ignore_data_skip`: False
262
+ - `fsdp`: []
263
+ - `fsdp_min_num_params`: 0
264
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
265
+ - `fsdp_transformer_layer_cls_to_wrap`: None
266
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
267
+ - `deepspeed`: None
268
+ - `label_smoothing_factor`: 0.0
269
+ - `optim`: adamw_torch
270
+ - `optim_args`: None
271
+ - `adafactor`: False
272
+ - `group_by_length`: False
273
+ - `length_column_name`: length
274
+ - `ddp_find_unused_parameters`: None
275
+ - `ddp_bucket_cap_mb`: None
276
+ - `ddp_broadcast_buffers`: False
277
+ - `dataloader_pin_memory`: True
278
+ - `dataloader_persistent_workers`: False
279
+ - `skip_memory_metrics`: True
280
+ - `use_legacy_prediction_loop`: False
281
+ - `push_to_hub`: False
282
+ - `resume_from_checkpoint`: None
283
+ - `hub_model_id`: None
284
+ - `hub_strategy`: every_save
285
+ - `hub_private_repo`: False
286
+ - `hub_always_push`: False
287
+ - `gradient_checkpointing`: False
288
+ - `gradient_checkpointing_kwargs`: None
289
+ - `include_inputs_for_metrics`: False
290
+ - `eval_do_concat_batches`: True
291
+ - `fp16_backend`: auto
292
+ - `push_to_hub_model_id`: None
293
+ - `push_to_hub_organization`: None
294
+ - `mp_parameters`:
295
+ - `auto_find_batch_size`: False
296
+ - `full_determinism`: False
297
+ - `torchdynamo`: None
298
+ - `ray_scope`: last
299
+ - `ddp_timeout`: 1800
300
+ - `torch_compile`: False
301
+ - `torch_compile_backend`: None
302
+ - `torch_compile_mode`: None
303
+ - `dispatch_batches`: None
304
+ - `split_batches`: None
305
+ - `include_tokens_per_second`: False
306
+ - `include_num_input_tokens_seen`: False
307
+ - `neftune_noise_alpha`: None
308
+ - `optim_target_modules`: None
309
+ - `batch_eval_metrics`: False
310
+ - `eval_on_start`: False
311
+ - `eval_use_gather_object`: False
312
+ - `batch_sampler`: no_duplicates
313
+ - `multi_dataset_batch_sampler`: proportional
314
+
315
+ </details>
316
+
317
+ ### Training Logs
318
+ | Epoch | Step | Training Loss |
319
+ |:-------:|:-------:|:-------------:|
320
+ | 0.25 | 23 | 1.0714 |
321
+ | 0.5 | 46 | 0.9487 |
322
+ | 0.75 | 69 | 0.8001 |
323
+ | 1.0 | 92 | 0.7443 |
324
+ | 1.25 | 115 | 0.3951 |
325
+ | 1.5 | 138 | 0.3903 |
326
+ | 1.75 | 161 | 0.3867 |
327
+ | 2.0 | 184 | 0.3386 |
328
+ | 2.25 | 207 | 0.2206 |
329
+ | 2.5 | 230 | 0.2051 |
330
+ | 2.75 | 253 | 0.2098 |
331
+ | 3.0 | 276 | 0.1989 |
332
+ | 3.25 | 299 | 0.1486 |
333
+ | 3.5 | 322 | 0.1463 |
334
+ | 3.75 | 345 | 0.1453 |
335
+ | 4.0 | 368 | 0.1237 |
336
+ | 4.25 | 391 | 0.0956 |
337
+ | 4.5 | 414 | 0.0939 |
338
+ | 4.75 | 437 | 0.1115 |
339
+ | 5.0 | 460 | 0.0925 |
340
+ | 5.25 | 483 | 0.0778 |
341
+ | 5.5 | 506 | 0.0744 |
342
+ | 5.75 | 529 | 0.09 |
343
+ | 6.0 | 552 | 0.0782 |
344
+ | 6.25 | 575 | 0.0454 |
345
+ | 6.5 | 598 | 0.0697 |
346
+ | 6.75 | 621 | 0.059 |
347
+ | 7.0 | 644 | 0.033 |
348
+ | 7.25 | 667 | 0.0309 |
349
+ | 7.5 | 690 | 0.0548 |
350
+ | 7.75 | 713 | 0.0605 |
351
+ | **8.0** | **736** | **0.0431** |
352
+ | 8.25 | 759 | 0.0224 |
353
+ | 8.5 | 782 | 0.0381 |
354
+ | 8.75 | 805 | 0.0451 |
355
+ | 9.0 | 828 | 0.0169 |
356
+ | 9.25 | 851 | 0.0228 |
357
+ | 9.5 | 874 | 0.0257 |
358
+
359
+ * The bold row denotes the saved checkpoint.
360
+
361
+ ### Framework Versions
362
+ - Python: 3.10.14
363
+ - Sentence Transformers: 3.1.0
364
+ - Transformers: 4.44.0
365
+ - PyTorch: 2.4.0
366
+ - Accelerate: 0.33.0
367
+ - Datasets: 2.19.2
368
+ - Tokenizers: 0.19.1
369
+
370
+ ## Citation
371
+
372
+ ### BibTeX
373
+
374
+ #### Sentence Transformers
375
+ ```bibtex
376
+ @inproceedings{reimers-2019-sentence-bert,
377
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
378
+ author = "Reimers, Nils and Gurevych, Iryna",
379
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
380
+ month = "11",
381
+ year = "2019",
382
+ publisher = "Association for Computational Linguistics",
383
+ url = "https://arxiv.org/abs/1908.10084",
384
+ }
385
+ ```
386
+
387
+ <!--
388
+ ## Glossary
389
+
390
+ *Clearly define terms in order to be accessible across audiences.*
391
+ -->
392
+
393
+ <!--
394
+ ## Model Card Authors
395
+
396
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
397
+ -->
398
+
399
+ <!--
400
+ ## Model Card Contact
401
+
402
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
403
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-large-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.0",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
+ "transformers": "4.44.0",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b22e8ee80d2523e7569113f4093e1b74199500b33f7ac4e7f69b23a04e6cdaac
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff