--- tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small_finetuned2 results: [] --- # t5-small_finetuned2 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2643 - Rouge1: 0.0724 - Rouge2: 0.0643 - Rougel: 0.0724 - Rougelsum: 0.0724 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.304 | 1.0 | 18565 | 0.2865 | 0.0706 | 0.062 | 0.0706 | 0.0706 | 19.0 | | 0.291 | 2.0 | 37130 | 0.2726 | 0.0719 | 0.0636 | 0.0719 | 0.0719 | 19.0 | | 0.2827 | 3.0 | 55695 | 0.2662 | 0.0723 | 0.0641 | 0.0722 | 0.0722 | 19.0 | | 0.2796 | 4.0 | 74260 | 0.2643 | 0.0724 | 0.0643 | 0.0724 | 0.0724 | 19.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0