Safetensors
English
llama
File size: 4,665 Bytes
cceb6e3
 
8afc19e
 
 
 
 
 
cceb6e3
ffbb6d3
5f5c9ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffbb6d3
 
 
 
 
 
 
 
 
0162d59
ffbb6d3
a1362bc
ffbb6d3
 
a2697e2
 
 
 
 
 
 
f408278
a2697e2
 
 
b6bd0c6
a2697e2
 
f408278
 
 
 
 
 
 
 
 
8afc19e
a2697e2
ffbb6d3
 
 
 
 
 
 
 
 
 
 
 
 
cceb6e3
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: apache-2.0
datasets:
- HPAI-BSC/Egida
language:
- en
base_model:
- meta-llama/Llama-3.1-8B-Instruct
---

<div align="center" style="line-height: 1;">
  <a href="https://arxiv.org/abs/2502.13603" target="_blank" style="margin: 2px;">
    <img alt="Paper" src="https://img.shields.io/badge/arXiv-2502.13603-b31b1b.svg" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://huggingface.co/collections/HPAI-BSC/egida-llm-safety-67b5b15d12bc9887d0045598" target="_blank" style="margin: 2px;">
    <img alt="Egida Collection" src="https://img.shields.io/badge/Egida_Collection-Hugging%20Face-FFD21E?logo=huggingface" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://hpai.bsc.es/" target="_blank" style="margin: 2px;">
    <img alt="HPAI Website" src="https://img.shields.io/badge/HPAI-Website-blue" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://www.linkedin.com/company/hpai" target="_blank" style="margin: 2px;">
    <img alt="LinkedIn" src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://bsky.app/profile/hpai.bsky.social" target="_blank" style="margin: 2px;">
    <img alt="Bluesky" src="https://img.shields.io/badge/Bluesky-0285FF?logo=bluesky&logoColor=fff" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>

## Model Description

- **Fine-Tuned from Model:** [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct)
- **Paper:** [Efficient Safety Retrofitting Against Jailbreaking for LLMs](https://arxiv.org/abs/2502.13603)
- **Point of Contact:** [Adrián Tormos](mailto:[email protected])


## Model Summary

This is a fine-tuned Llama-3.1-8B-Instruct model on the [Egida-DPO-Llama-3.1-8B-Instruct](https://huggingface.co/datasets/HPAI-BSC/Egida/viewer/Egida-DPO-Meta-Llama-3.1-8B-Instruct) dataset.

The [Egida](https://huggingface.co/datasets/HPAI-BSC/Egida/viewer/Egida?views%5B%5D=egida_full) dataset is a collection of adversarial prompts that are thought to ellicit unsafe behaviors from language models. Specifically for this case, the Egida train split is used to run inference on Llama-3.1-70B-Instruct. Unsafe answers are selected, and paired with safe answers to create a customized DPO
dataset for this model. This results in a DPO dataset composed by triplets < ”question”, ”chosen answer”, ”discarded answer” > which contain questions that elicit unsafe responses by this target model, as well as the unsafe responses produced by it.

## Performance

### Safety Performance (Attack Success Ratio)

|                              | Egida (test) ↓ | DELPHI ↓ | Alert-Base ↓ | Alert-Adv ↓ |
|------------------------------|:--------------:|:--------:|:------------:|:-----------:|
| Meta-Llama-3.1-8B-Instruct   |     0.347      |  0.160   |    0.446     |    0.039    |
| Meta-Llama-3.1-8B-Instruct-Egida-DPO  |     0.038      |  0.025   |    0.038     |    0.014    |

### General Purpose Performance

|                              | OpenLLM Leaderboard (Average) ↑ | MMLU Generative (ROUGE1) ↑ |
|------------------------------|:---------------------:|:---------------:|
| Meta-Llama-3.1-8B-Instruct   |         0.453         |      0.646      |
| Meta-Llama-3.1-8B-Instruct-Egida-DPO  |         0.453         |      0.643      |

### Refusal Ratio

|                              | OR Bench 80K (refusal) ↓ | OR Bench Hard (refusal) ↓ |
|------------------------------|:---------------------:|:---------------:|
| Meta-Llama-3.1-8B-Instruct         |          0.035           |           0.324           |
| Meta-Llama-3.1-8B-Instruct-Egida-DPO        |          0.037           |           0.319           |

Note that this refusal ratio is computed as keyword matching with a curated list of keywords. For more information, check the paper.

## Training Details

- **Hardware:** NVIDIA H100 64 GB GPUs
- **Devices:** 4 GPUs (1 node)
- **Time:** 1.59h
- **Batch Size:** 8
- **LR:** 10−7

## Environmental Impact


## Citation Information


```
@misc{garciagasulla2025efficientsafetyretrofittingjailbreaking,
      title={Efficient Safety Retrofitting Against Jailbreaking for LLMs}, 
      author={Dario Garcia-Gasulla and Adrian Tormos and Anna Arias-Duart and Daniel Hinjos and Oscar Molina-Sedano and Ashwin Kumar Gururajan and Maria Eugenia Cardello},
      year={2025},
      eprint={2502.13603},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2502.13603}, 
}
```