Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,48 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
| 4 |
+
|
| 5 |
+
[Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Transformers library and Habana's Gaudi processor (HPU). It provides a set of tools enabling easy and fast model loading and fine-tuning on single- and multi-HPU settings for different downstream tasks.
|
| 6 |
+
Learn more about how to take advantage of the power of Habana HPUs to train Transformers models at [hf.co/Habana](https://huggingface.co/Habana).
|
| 7 |
+
|
| 8 |
+
## RoBERTa Large model HPU configuration
|
| 9 |
+
|
| 10 |
+
This model contains just the `GaudiConfig` file for running the [roberta-large](https://huggingface.co/roberta-large) model on Habana's Gaudi processors (HPU).
|
| 11 |
+
|
| 12 |
+
**This model contains no model weights, only a GaudiConfig.**
|
| 13 |
+
|
| 14 |
+
This enables to specify:
|
| 15 |
+
- `use_habana_mixed_precision`: whether to use Habana Mixed Precision (HMP)
|
| 16 |
+
- `hmp_opt_level`: optimization level for HMP, see [here](https://docs.habana.ai/en/latest/PyTorch/PyTorch_User_Guide/PT_Mixed_Precision.html#configuration-options) for a detailed explanation
|
| 17 |
+
- `hmp_bf16_ops`: list of operators that should run in bf16
|
| 18 |
+
- `hmp_fp32_ops`: list of operators that should run in fp32
|
| 19 |
+
- `hmp_is_verbose`: verbosity
|
| 20 |
+
- `use_fused_adam`: whether to use Habana's custom AdamW implementation
|
| 21 |
+
- `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator
|
| 22 |
+
|
| 23 |
+
## Usage
|
| 24 |
+
|
| 25 |
+
The model is instantiated the same way as in the Transformers library.
|
| 26 |
+
The only difference is that the Gaudi configuration has to be loaded and provided to the trainer:
|
| 27 |
+
|
| 28 |
+
```
|
| 29 |
+
from optimum.habana import GaudiConfig, GaudiTrainer, GaudiTrainingArguments
|
| 30 |
+
from transformers import RobertaModel, RobertaTokenizer
|
| 31 |
+
|
| 32 |
+
tokenizer = RobertaTokenizer.from_pretrained("roberta-large")
|
| 33 |
+
model = RobertaModel.from_pretrained("roberta-large")
|
| 34 |
+
gaudi_config = GaudiConfig.from_pretrained("Habana/roberta-large")
|
| 35 |
+
args = GaudiTrainingArguments(
|
| 36 |
+
output_dir="/tmp/output_dir",
|
| 37 |
+
use_habana=True,
|
| 38 |
+
use_lazy_mode=True,
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
trainer = GaudiTrainer(
|
| 42 |
+
model=model,
|
| 43 |
+
gaudi_config=gaudi_config,
|
| 44 |
+
args=args,
|
| 45 |
+
tokenizer=tokenizer,
|
| 46 |
+
)
|
| 47 |
+
trainer.train()
|
| 48 |
+
```
|