Model save
Browse files- README.md +67 -0
- all_results.json +8 -0
- generation_config.json +6 -0
- train_results.json +8 -0
- trainer_state.json +2178 -0
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
model_name: Qwen2.5-Math-7B-random-numia_prompt_dpo1
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
- trl
|
7 |
+
- grpo
|
8 |
+
licence: license
|
9 |
+
---
|
10 |
+
|
11 |
+
# Model Card for Qwen2.5-Math-7B-random-numia_prompt_dpo1
|
12 |
+
|
13 |
+
This model is a fine-tuned version of [None](https://huggingface.co/None).
|
14 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
15 |
+
|
16 |
+
## Quick start
|
17 |
+
|
18 |
+
```python
|
19 |
+
from transformers import pipeline
|
20 |
+
|
21 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
22 |
+
generator = pipeline("text-generation", model="Haitao999/Qwen2.5-Math-7B-random-numia_prompt_dpo1", device="cuda")
|
23 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
24 |
+
print(output["generated_text"])
|
25 |
+
```
|
26 |
+
|
27 |
+
## Training procedure
|
28 |
+
|
29 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/tjucsailab/huggingface/runs/8nbcvram)
|
30 |
+
|
31 |
+
|
32 |
+
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
|
33 |
+
|
34 |
+
### Framework versions
|
35 |
+
|
36 |
+
- TRL: 0.14.0
|
37 |
+
- Transformers: 4.48.3
|
38 |
+
- Pytorch: 2.5.1
|
39 |
+
- Datasets: 3.2.0
|
40 |
+
- Tokenizers: 0.21.1
|
41 |
+
|
42 |
+
## Citations
|
43 |
+
|
44 |
+
Cite GRPO as:
|
45 |
+
|
46 |
+
```bibtex
|
47 |
+
@article{zhihong2024deepseekmath,
|
48 |
+
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
|
49 |
+
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
|
50 |
+
year = 2024,
|
51 |
+
eprint = {arXiv:2402.03300},
|
52 |
+
}
|
53 |
+
|
54 |
+
```
|
55 |
+
|
56 |
+
Cite TRL as:
|
57 |
+
|
58 |
+
```bibtex
|
59 |
+
@misc{vonwerra2022trl,
|
60 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
61 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
62 |
+
year = 2020,
|
63 |
+
journal = {GitHub repository},
|
64 |
+
publisher = {GitHub},
|
65 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
66 |
+
}
|
67 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 0.0,
|
3 |
+
"train_loss": 8.003707675146196e-08,
|
4 |
+
"train_runtime": 99592.7903,
|
5 |
+
"train_samples": 20000,
|
6 |
+
"train_samples_per_second": 0.201,
|
7 |
+
"train_steps_per_second": 0.002
|
8 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"eos_token_id": 151643,
|
4 |
+
"max_new_tokens": 2048,
|
5 |
+
"transformers_version": "4.48.3"
|
6 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 0.0,
|
3 |
+
"train_loss": 8.003707675146196e-08,
|
4 |
+
"train_runtime": 99592.7903,
|
5 |
+
"train_samples": 20000,
|
6 |
+
"train_samples_per_second": 0.201,
|
7 |
+
"train_steps_per_second": 0.002
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9965010496850945,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 178,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"completion_length": 840.6339149475098,
|
13 |
+
"epoch": 0.005598320503848845,
|
14 |
+
"grad_norm": 0.7309558391571045,
|
15 |
+
"kl": 0.0,
|
16 |
+
"learning_rate": 3e-07,
|
17 |
+
"loss": 0.0,
|
18 |
+
"reward": 0.4647472910583019,
|
19 |
+
"reward_std": 0.2918772315606475,
|
20 |
+
"rewards/random_math_reward": 0.4647472910583019,
|
21 |
+
"step": 1
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"completion_length": 852.609676361084,
|
25 |
+
"epoch": 0.01119664100769769,
|
26 |
+
"grad_norm": 0.6802689433097839,
|
27 |
+
"kl": 0.0002111196517944336,
|
28 |
+
"learning_rate": 3e-07,
|
29 |
+
"loss": 0.0,
|
30 |
+
"reward": 0.46338964626193047,
|
31 |
+
"reward_std": 0.306376988068223,
|
32 |
+
"rewards/random_math_reward": 0.46338964626193047,
|
33 |
+
"step": 2
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"completion_length": 900.8494682312012,
|
37 |
+
"epoch": 0.016794961511546535,
|
38 |
+
"grad_norm": 0.11767072975635529,
|
39 |
+
"kl": 0.00023311376571655273,
|
40 |
+
"learning_rate": 3e-07,
|
41 |
+
"loss": 0.0,
|
42 |
+
"reward": 0.4775644950568676,
|
43 |
+
"reward_std": 0.32149738259613514,
|
44 |
+
"rewards/random_math_reward": 0.4775644950568676,
|
45 |
+
"step": 3
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"completion_length": 851.5382461547852,
|
49 |
+
"epoch": 0.02239328201539538,
|
50 |
+
"grad_norm": 0.11348643153905869,
|
51 |
+
"kl": 0.0002281665802001953,
|
52 |
+
"learning_rate": 3e-07,
|
53 |
+
"loss": 0.0,
|
54 |
+
"reward": 0.48735272884368896,
|
55 |
+
"reward_std": 0.30069673527032137,
|
56 |
+
"rewards/random_math_reward": 0.48735272884368896,
|
57 |
+
"step": 4
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"completion_length": 883.405590057373,
|
61 |
+
"epoch": 0.02799160251924423,
|
62 |
+
"grad_norm": 0.08939001709222794,
|
63 |
+
"kl": 0.00023871660232543945,
|
64 |
+
"learning_rate": 3e-07,
|
65 |
+
"loss": 0.0,
|
66 |
+
"reward": 0.4512794092297554,
|
67 |
+
"reward_std": 0.27799729630351067,
|
68 |
+
"rewards/random_math_reward": 0.4512794092297554,
|
69 |
+
"step": 5
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"completion_length": 835.0280456542969,
|
73 |
+
"epoch": 0.03358992302309307,
|
74 |
+
"grad_norm": 0.27869054675102234,
|
75 |
+
"kl": 0.0002474188804626465,
|
76 |
+
"learning_rate": 3e-07,
|
77 |
+
"loss": 0.0,
|
78 |
+
"reward": 0.47673217207193375,
|
79 |
+
"reward_std": 0.29296134505420923,
|
80 |
+
"rewards/random_math_reward": 0.47673217207193375,
|
81 |
+
"step": 6
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"completion_length": 907.8456382751465,
|
85 |
+
"epoch": 0.03918824352694192,
|
86 |
+
"grad_norm": 0.862323522567749,
|
87 |
+
"kl": 0.00039499998092651367,
|
88 |
+
"learning_rate": 3e-07,
|
89 |
+
"loss": 0.0,
|
90 |
+
"reward": 0.45936181023716927,
|
91 |
+
"reward_std": 0.2918355893343687,
|
92 |
+
"rewards/random_math_reward": 0.45936181023716927,
|
93 |
+
"step": 7
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"completion_length": 859.1173267364502,
|
97 |
+
"epoch": 0.04478656403079076,
|
98 |
+
"grad_norm": 0.23682314157485962,
|
99 |
+
"kl": 0.00037294626235961914,
|
100 |
+
"learning_rate": 3e-07,
|
101 |
+
"loss": 0.0,
|
102 |
+
"reward": 0.5094553399831057,
|
103 |
+
"reward_std": 0.28784568049013615,
|
104 |
+
"rewards/random_math_reward": 0.5094553399831057,
|
105 |
+
"step": 8
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"completion_length": 858.5267715454102,
|
109 |
+
"epoch": 0.05038488453463961,
|
110 |
+
"grad_norm": 0.07127245515584946,
|
111 |
+
"kl": 0.00028765201568603516,
|
112 |
+
"learning_rate": 3e-07,
|
113 |
+
"loss": 0.0,
|
114 |
+
"reward": 0.5017606746405363,
|
115 |
+
"reward_std": 0.2951846132054925,
|
116 |
+
"rewards/random_math_reward": 0.5017606746405363,
|
117 |
+
"step": 9
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"completion_length": 877.473201751709,
|
121 |
+
"epoch": 0.05598320503848846,
|
122 |
+
"grad_norm": 0.032599493861198425,
|
123 |
+
"kl": 0.00027692317962646484,
|
124 |
+
"learning_rate": 3e-07,
|
125 |
+
"loss": 0.0,
|
126 |
+
"reward": 0.48044879734516144,
|
127 |
+
"reward_std": 0.3181338291615248,
|
128 |
+
"rewards/random_math_reward": 0.48044879734516144,
|
129 |
+
"step": 10
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"completion_length": 870.3584022521973,
|
133 |
+
"epoch": 0.0615815255423373,
|
134 |
+
"grad_norm": 0.2817532420158386,
|
135 |
+
"kl": 0.00034165382385253906,
|
136 |
+
"learning_rate": 3e-07,
|
137 |
+
"loss": 0.0,
|
138 |
+
"reward": 0.4617793317884207,
|
139 |
+
"reward_std": 0.28720600064843893,
|
140 |
+
"rewards/random_math_reward": 0.4617793317884207,
|
141 |
+
"step": 11
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"completion_length": 875.0089111328125,
|
145 |
+
"epoch": 0.06717984604618614,
|
146 |
+
"grad_norm": 0.04790099710226059,
|
147 |
+
"kl": 0.0003007054328918457,
|
148 |
+
"learning_rate": 3e-07,
|
149 |
+
"loss": 0.0,
|
150 |
+
"reward": 0.44794472493231297,
|
151 |
+
"reward_std": 0.27486683428287506,
|
152 |
+
"rewards/random_math_reward": 0.44794472493231297,
|
153 |
+
"step": 12
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"completion_length": 888.2474327087402,
|
157 |
+
"epoch": 0.072778166550035,
|
158 |
+
"grad_norm": 0.07171210646629333,
|
159 |
+
"kl": 0.0003644227981567383,
|
160 |
+
"learning_rate": 3e-07,
|
161 |
+
"loss": 0.0,
|
162 |
+
"reward": 0.4840338323265314,
|
163 |
+
"reward_std": 0.2867116192355752,
|
164 |
+
"rewards/random_math_reward": 0.4840338323265314,
|
165 |
+
"step": 13
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"completion_length": 887.8545837402344,
|
169 |
+
"epoch": 0.07837648705388384,
|
170 |
+
"grad_norm": 0.02272365428507328,
|
171 |
+
"kl": 0.00030791759490966797,
|
172 |
+
"learning_rate": 3e-07,
|
173 |
+
"loss": 0.0,
|
174 |
+
"reward": 0.4695360567420721,
|
175 |
+
"reward_std": 0.30686575919389725,
|
176 |
+
"rewards/random_math_reward": 0.4695360567420721,
|
177 |
+
"step": 14
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"completion_length": 894.8392677307129,
|
181 |
+
"epoch": 0.08397480755773268,
|
182 |
+
"grad_norm": 0.1592845916748047,
|
183 |
+
"kl": 0.0007302761077880859,
|
184 |
+
"learning_rate": 3e-07,
|
185 |
+
"loss": 0.0,
|
186 |
+
"reward": 0.5013854652643204,
|
187 |
+
"reward_std": 0.30024987645447254,
|
188 |
+
"rewards/random_math_reward": 0.5013854652643204,
|
189 |
+
"step": 15
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"completion_length": 826.4298248291016,
|
193 |
+
"epoch": 0.08957312806158152,
|
194 |
+
"grad_norm": 0.11753757297992706,
|
195 |
+
"kl": 0.00044095516204833984,
|
196 |
+
"learning_rate": 3e-07,
|
197 |
+
"loss": 0.0,
|
198 |
+
"reward": 0.48069896548986435,
|
199 |
+
"reward_std": 0.2729701278731227,
|
200 |
+
"rewards/random_math_reward": 0.48069896548986435,
|
201 |
+
"step": 16
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"completion_length": 902.1517715454102,
|
205 |
+
"epoch": 0.09517144856543037,
|
206 |
+
"grad_norm": 0.111512191593647,
|
207 |
+
"kl": 0.0004519224166870117,
|
208 |
+
"learning_rate": 3e-07,
|
209 |
+
"loss": 0.0,
|
210 |
+
"reward": 0.48635287396609783,
|
211 |
+
"reward_std": 0.2879869397729635,
|
212 |
+
"rewards/random_math_reward": 0.48635287396609783,
|
213 |
+
"step": 17
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"completion_length": 893.360954284668,
|
217 |
+
"epoch": 0.10076976906927922,
|
218 |
+
"grad_norm": 0.2031000405550003,
|
219 |
+
"kl": 0.0005553364753723145,
|
220 |
+
"learning_rate": 3e-07,
|
221 |
+
"loss": 0.0,
|
222 |
+
"reward": 0.48062865249812603,
|
223 |
+
"reward_std": 0.31339638121426105,
|
224 |
+
"rewards/random_math_reward": 0.48062865249812603,
|
225 |
+
"step": 18
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"completion_length": 838.4757537841797,
|
229 |
+
"epoch": 0.10636808957312806,
|
230 |
+
"grad_norm": 0.1047205924987793,
|
231 |
+
"kl": 0.00042116641998291016,
|
232 |
+
"learning_rate": 3e-07,
|
233 |
+
"loss": 0.0,
|
234 |
+
"reward": 0.4573891665786505,
|
235 |
+
"reward_std": 0.283748428337276,
|
236 |
+
"rewards/random_math_reward": 0.4573891665786505,
|
237 |
+
"step": 19
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"completion_length": 853.5701332092285,
|
241 |
+
"epoch": 0.11196641007697691,
|
242 |
+
"grad_norm": 0.026682933792471886,
|
243 |
+
"kl": 0.00039273500442504883,
|
244 |
+
"learning_rate": 3e-07,
|
245 |
+
"loss": 0.0,
|
246 |
+
"reward": 0.5187842268496752,
|
247 |
+
"reward_std": 0.2996611688286066,
|
248 |
+
"rewards/random_math_reward": 0.5187842268496752,
|
249 |
+
"step": 20
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"completion_length": 884.6606903076172,
|
253 |
+
"epoch": 0.11756473058082575,
|
254 |
+
"grad_norm": 0.07019887119531631,
|
255 |
+
"kl": 0.0003604888916015625,
|
256 |
+
"learning_rate": 3e-07,
|
257 |
+
"loss": 0.0,
|
258 |
+
"reward": 0.4664475191384554,
|
259 |
+
"reward_std": 0.31808448024094105,
|
260 |
+
"rewards/random_math_reward": 0.4664475191384554,
|
261 |
+
"step": 21
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"completion_length": 906.0828857421875,
|
265 |
+
"epoch": 0.1231630510846746,
|
266 |
+
"grad_norm": 0.05280100554227829,
|
267 |
+
"kl": 0.0005142688751220703,
|
268 |
+
"learning_rate": 3e-07,
|
269 |
+
"loss": 0.0,
|
270 |
+
"reward": 0.4690139964222908,
|
271 |
+
"reward_std": 0.27718855906277895,
|
272 |
+
"rewards/random_math_reward": 0.4690139964222908,
|
273 |
+
"step": 22
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"completion_length": 887.6466636657715,
|
277 |
+
"epoch": 0.12876137158852344,
|
278 |
+
"grad_norm": 0.04366298019886017,
|
279 |
+
"kl": 0.0004309415817260742,
|
280 |
+
"learning_rate": 3e-07,
|
281 |
+
"loss": 0.0,
|
282 |
+
"reward": 0.43934059888124466,
|
283 |
+
"reward_std": 0.27285193372517824,
|
284 |
+
"rewards/random_math_reward": 0.43934059888124466,
|
285 |
+
"step": 23
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"completion_length": 884.6441116333008,
|
289 |
+
"epoch": 0.13435969209237228,
|
290 |
+
"grad_norm": 0.24076521396636963,
|
291 |
+
"kl": 0.0005651712417602539,
|
292 |
+
"learning_rate": 3e-07,
|
293 |
+
"loss": 0.0,
|
294 |
+
"reward": 0.4910389892756939,
|
295 |
+
"reward_std": 0.28644737135618925,
|
296 |
+
"rewards/random_math_reward": 0.4910389892756939,
|
297 |
+
"step": 24
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"completion_length": 853.1759986877441,
|
301 |
+
"epoch": 0.13995801259622112,
|
302 |
+
"grad_norm": 0.27850207686424255,
|
303 |
+
"kl": 0.00044476985931396484,
|
304 |
+
"learning_rate": 3e-07,
|
305 |
+
"loss": 0.0,
|
306 |
+
"reward": 0.4575974587351084,
|
307 |
+
"reward_std": 0.30237106420099735,
|
308 |
+
"rewards/random_math_reward": 0.4575974587351084,
|
309 |
+
"step": 25
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"completion_length": 894.9030342102051,
|
313 |
+
"epoch": 0.14555633310007,
|
314 |
+
"grad_norm": 0.049030691385269165,
|
315 |
+
"kl": 0.00048810243606567383,
|
316 |
+
"learning_rate": 3e-07,
|
317 |
+
"loss": 0.0,
|
318 |
+
"reward": 0.4729502145200968,
|
319 |
+
"reward_std": 0.285190143622458,
|
320 |
+
"rewards/random_math_reward": 0.4729502145200968,
|
321 |
+
"step": 26
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"completion_length": 854.3010063171387,
|
325 |
+
"epoch": 0.15115465360391883,
|
326 |
+
"grad_norm": 0.07516992837190628,
|
327 |
+
"kl": 0.0005003213882446289,
|
328 |
+
"learning_rate": 3e-07,
|
329 |
+
"loss": 0.0,
|
330 |
+
"reward": 0.4500812850892544,
|
331 |
+
"reward_std": 0.32013510540127754,
|
332 |
+
"rewards/random_math_reward": 0.4500812850892544,
|
333 |
+
"step": 27
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"completion_length": 858.9030418395996,
|
337 |
+
"epoch": 0.15675297410776767,
|
338 |
+
"grad_norm": 0.20776700973510742,
|
339 |
+
"kl": 0.0009773969650268555,
|
340 |
+
"learning_rate": 3e-07,
|
341 |
+
"loss": 0.0,
|
342 |
+
"reward": 0.5247392375022173,
|
343 |
+
"reward_std": 0.32408637553453445,
|
344 |
+
"rewards/random_math_reward": 0.5247392375022173,
|
345 |
+
"step": 28
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"completion_length": 844.9770317077637,
|
349 |
+
"epoch": 0.16235129461161651,
|
350 |
+
"grad_norm": 0.0495678074657917,
|
351 |
+
"kl": 0.0009752511978149414,
|
352 |
+
"learning_rate": 3e-07,
|
353 |
+
"loss": 0.0,
|
354 |
+
"reward": 0.43325162678956985,
|
355 |
+
"reward_std": 0.29721821192651987,
|
356 |
+
"rewards/random_math_reward": 0.43325162678956985,
|
357 |
+
"step": 29
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"completion_length": 908.6619758605957,
|
361 |
+
"epoch": 0.16794961511546536,
|
362 |
+
"grad_norm": 0.053116437047719955,
|
363 |
+
"kl": 0.0007257461547851562,
|
364 |
+
"learning_rate": 3e-07,
|
365 |
+
"loss": 0.0,
|
366 |
+
"reward": 0.510849991813302,
|
367 |
+
"reward_std": 0.2977478625252843,
|
368 |
+
"rewards/random_math_reward": 0.510849991813302,
|
369 |
+
"step": 30
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"completion_length": 895.2946281433105,
|
373 |
+
"epoch": 0.1735479356193142,
|
374 |
+
"grad_norm": 0.01952669955790043,
|
375 |
+
"kl": 0.0004551410675048828,
|
376 |
+
"learning_rate": 3e-07,
|
377 |
+
"loss": 0.0,
|
378 |
+
"reward": 0.4997572433203459,
|
379 |
+
"reward_std": 0.2973903976380825,
|
380 |
+
"rewards/random_math_reward": 0.4997572433203459,
|
381 |
+
"step": 31
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"completion_length": 917.7333984375,
|
385 |
+
"epoch": 0.17914625612316304,
|
386 |
+
"grad_norm": 0.1707552671432495,
|
387 |
+
"kl": 0.0006129741668701172,
|
388 |
+
"learning_rate": 3e-07,
|
389 |
+
"loss": 0.0,
|
390 |
+
"reward": 0.465914161875844,
|
391 |
+
"reward_std": 0.30206145346164703,
|
392 |
+
"rewards/random_math_reward": 0.465914161875844,
|
393 |
+
"step": 32
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"completion_length": 870.7665557861328,
|
397 |
+
"epoch": 0.1847445766270119,
|
398 |
+
"grad_norm": 0.035584185272455215,
|
399 |
+
"kl": 0.0004489421844482422,
|
400 |
+
"learning_rate": 3e-07,
|
401 |
+
"loss": 0.0,
|
402 |
+
"reward": 0.45434157736599445,
|
403 |
+
"reward_std": 0.30155808478593826,
|
404 |
+
"rewards/random_math_reward": 0.45434157736599445,
|
405 |
+
"step": 33
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"completion_length": 873.6504936218262,
|
409 |
+
"epoch": 0.19034289713086075,
|
410 |
+
"grad_norm": 0.046750955283641815,
|
411 |
+
"kl": 0.0005222558975219727,
|
412 |
+
"learning_rate": 3e-07,
|
413 |
+
"loss": 0.0,
|
414 |
+
"reward": 0.49102505296468735,
|
415 |
+
"reward_std": 0.2892821617424488,
|
416 |
+
"rewards/random_math_reward": 0.49102505296468735,
|
417 |
+
"step": 34
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"completion_length": 885.6441230773926,
|
421 |
+
"epoch": 0.1959412176347096,
|
422 |
+
"grad_norm": 0.02094712294638157,
|
423 |
+
"kl": 0.0004401206970214844,
|
424 |
+
"learning_rate": 3e-07,
|
425 |
+
"loss": 0.0,
|
426 |
+
"reward": 0.49038008227944374,
|
427 |
+
"reward_std": 0.2766480268910527,
|
428 |
+
"rewards/random_math_reward": 0.49038008227944374,
|
429 |
+
"step": 35
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"completion_length": 857.9094200134277,
|
433 |
+
"epoch": 0.20153953813855843,
|
434 |
+
"grad_norm": 0.32986631989479065,
|
435 |
+
"kl": 0.0016863346099853516,
|
436 |
+
"learning_rate": 3e-07,
|
437 |
+
"loss": 0.0,
|
438 |
+
"reward": 0.5011246297508478,
|
439 |
+
"reward_std": 0.2916059549897909,
|
440 |
+
"rewards/random_math_reward": 0.5011246297508478,
|
441 |
+
"step": 36
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"completion_length": 839.3214149475098,
|
445 |
+
"epoch": 0.20713785864240727,
|
446 |
+
"grad_norm": 0.04805277660489082,
|
447 |
+
"kl": 0.0015134811401367188,
|
448 |
+
"learning_rate": 3e-07,
|
449 |
+
"loss": 0.0,
|
450 |
+
"reward": 0.47658345103263855,
|
451 |
+
"reward_std": 0.26997081749141216,
|
452 |
+
"rewards/random_math_reward": 0.47658345103263855,
|
453 |
+
"step": 37
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"completion_length": 888.7257461547852,
|
457 |
+
"epoch": 0.21273617914625612,
|
458 |
+
"grad_norm": 0.026755526661872864,
|
459 |
+
"kl": 0.0005905628204345703,
|
460 |
+
"learning_rate": 3e-07,
|
461 |
+
"loss": 0.0,
|
462 |
+
"reward": 0.4430251754820347,
|
463 |
+
"reward_std": 0.28255612775683403,
|
464 |
+
"rewards/random_math_reward": 0.4430251754820347,
|
465 |
+
"step": 38
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"completion_length": 879.1823692321777,
|
469 |
+
"epoch": 0.21833449965010496,
|
470 |
+
"grad_norm": 0.11245640367269516,
|
471 |
+
"kl": 0.000995039939880371,
|
472 |
+
"learning_rate": 3e-07,
|
473 |
+
"loss": 0.0,
|
474 |
+
"reward": 0.4720071740448475,
|
475 |
+
"reward_std": 0.27762684039771557,
|
476 |
+
"rewards/random_math_reward": 0.4720071740448475,
|
477 |
+
"step": 39
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"completion_length": 930.487232208252,
|
481 |
+
"epoch": 0.22393282015395383,
|
482 |
+
"grad_norm": 0.053661637008190155,
|
483 |
+
"kl": 0.0007688403129577637,
|
484 |
+
"learning_rate": 3e-07,
|
485 |
+
"loss": 0.0,
|
486 |
+
"reward": 0.4835520200431347,
|
487 |
+
"reward_std": 0.28671225160360336,
|
488 |
+
"rewards/random_math_reward": 0.4835520200431347,
|
489 |
+
"step": 40
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"completion_length": 893.3328971862793,
|
493 |
+
"epoch": 0.22953114065780267,
|
494 |
+
"grad_norm": 0.5499238967895508,
|
495 |
+
"kl": 0.003184080123901367,
|
496 |
+
"learning_rate": 3e-07,
|
497 |
+
"loss": 0.0,
|
498 |
+
"reward": 0.4463555943220854,
|
499 |
+
"reward_std": 0.2914181677624583,
|
500 |
+
"rewards/random_math_reward": 0.4463555943220854,
|
501 |
+
"step": 41
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"completion_length": 898.3367156982422,
|
505 |
+
"epoch": 0.2351294611616515,
|
506 |
+
"grad_norm": 0.046797916293144226,
|
507 |
+
"kl": 0.0005197525024414062,
|
508 |
+
"learning_rate": 3e-07,
|
509 |
+
"loss": 0.0,
|
510 |
+
"reward": 0.45641600526869297,
|
511 |
+
"reward_std": 0.2792764212936163,
|
512 |
+
"rewards/random_math_reward": 0.45641600526869297,
|
513 |
+
"step": 42
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"completion_length": 845.0535507202148,
|
517 |
+
"epoch": 0.24072778166550035,
|
518 |
+
"grad_norm": 0.0507148802280426,
|
519 |
+
"kl": 0.0009500980377197266,
|
520 |
+
"learning_rate": 3e-07,
|
521 |
+
"loss": 0.0,
|
522 |
+
"reward": 0.4459559340029955,
|
523 |
+
"reward_std": 0.29090235754847527,
|
524 |
+
"rewards/random_math_reward": 0.4459559340029955,
|
525 |
+
"step": 43
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"completion_length": 876.5892677307129,
|
529 |
+
"epoch": 0.2463261021693492,
|
530 |
+
"grad_norm": 0.04941030591726303,
|
531 |
+
"kl": 0.000649571418762207,
|
532 |
+
"learning_rate": 3e-07,
|
533 |
+
"loss": 0.0,
|
534 |
+
"reward": 0.4653678424656391,
|
535 |
+
"reward_std": 0.28301908634603024,
|
536 |
+
"rewards/random_math_reward": 0.4653678424656391,
|
537 |
+
"step": 44
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"completion_length": 888.4846801757812,
|
541 |
+
"epoch": 0.25192442267319803,
|
542 |
+
"grad_norm": 0.026715300977230072,
|
543 |
+
"kl": 0.0008295774459838867,
|
544 |
+
"learning_rate": 3e-07,
|
545 |
+
"loss": 0.0,
|
546 |
+
"reward": 0.45214173197746277,
|
547 |
+
"reward_std": 0.3066752403974533,
|
548 |
+
"rewards/random_math_reward": 0.45214173197746277,
|
549 |
+
"step": 45
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"completion_length": 846.2231979370117,
|
553 |
+
"epoch": 0.2575227431770469,
|
554 |
+
"grad_norm": 0.024737877771258354,
|
555 |
+
"kl": 0.0005326271057128906,
|
556 |
+
"learning_rate": 3e-07,
|
557 |
+
"loss": 0.0,
|
558 |
+
"reward": 0.5093872379511595,
|
559 |
+
"reward_std": 0.28799473866820335,
|
560 |
+
"rewards/random_math_reward": 0.5093872379511595,
|
561 |
+
"step": 46
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"completion_length": 865.0395202636719,
|
565 |
+
"epoch": 0.2631210636808957,
|
566 |
+
"grad_norm": 0.37511223554611206,
|
567 |
+
"kl": 0.001316070556640625,
|
568 |
+
"learning_rate": 3e-07,
|
569 |
+
"loss": 0.0,
|
570 |
+
"reward": 0.4726740214973688,
|
571 |
+
"reward_std": 0.27686448488384485,
|
572 |
+
"rewards/random_math_reward": 0.4726740214973688,
|
573 |
+
"step": 47
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"completion_length": 884.132640838623,
|
577 |
+
"epoch": 0.26871938418474456,
|
578 |
+
"grad_norm": 0.03645370528101921,
|
579 |
+
"kl": 0.0006043910980224609,
|
580 |
+
"learning_rate": 3e-07,
|
581 |
+
"loss": 0.0,
|
582 |
+
"reward": 0.4929856266826391,
|
583 |
+
"reward_std": 0.2844850402325392,
|
584 |
+
"rewards/random_math_reward": 0.4929856266826391,
|
585 |
+
"step": 48
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"completion_length": 941.7487030029297,
|
589 |
+
"epoch": 0.2743177046885934,
|
590 |
+
"grad_norm": 0.04691855236887932,
|
591 |
+
"kl": 0.0006322860717773438,
|
592 |
+
"learning_rate": 3e-07,
|
593 |
+
"loss": 0.0,
|
594 |
+
"reward": 0.46845594607293606,
|
595 |
+
"reward_std": 0.2635832289233804,
|
596 |
+
"rewards/random_math_reward": 0.46845594607293606,
|
597 |
+
"step": 49
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"completion_length": 886.7040634155273,
|
601 |
+
"epoch": 0.27991602519244224,
|
602 |
+
"grad_norm": 0.01480669155716896,
|
603 |
+
"kl": 0.0007061958312988281,
|
604 |
+
"learning_rate": 3e-07,
|
605 |
+
"loss": 0.0,
|
606 |
+
"reward": 0.49290234968066216,
|
607 |
+
"reward_std": 0.28575755935162306,
|
608 |
+
"rewards/random_math_reward": 0.49290234968066216,
|
609 |
+
"step": 50
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"completion_length": 881.2589111328125,
|
613 |
+
"epoch": 0.28551434569629114,
|
614 |
+
"grad_norm": 0.18569053709506989,
|
615 |
+
"kl": 0.0008254051208496094,
|
616 |
+
"learning_rate": 3e-07,
|
617 |
+
"loss": 0.0,
|
618 |
+
"reward": 0.470220735296607,
|
619 |
+
"reward_std": 0.3022102378308773,
|
620 |
+
"rewards/random_math_reward": 0.470220735296607,
|
621 |
+
"step": 51
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"completion_length": 858.8775253295898,
|
625 |
+
"epoch": 0.29111266620014,
|
626 |
+
"grad_norm": 0.06353636085987091,
|
627 |
+
"kl": 0.0007264614105224609,
|
628 |
+
"learning_rate": 3e-07,
|
629 |
+
"loss": 0.0,
|
630 |
+
"reward": 0.5083950478583574,
|
631 |
+
"reward_std": 0.29449230805039406,
|
632 |
+
"rewards/random_math_reward": 0.5083950478583574,
|
633 |
+
"step": 52
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"completion_length": 886.2869720458984,
|
637 |
+
"epoch": 0.2967109867039888,
|
638 |
+
"grad_norm": 0.035578541457653046,
|
639 |
+
"kl": 0.0007152557373046875,
|
640 |
+
"learning_rate": 3e-07,
|
641 |
+
"loss": 0.0,
|
642 |
+
"reward": 0.4716050550341606,
|
643 |
+
"reward_std": 0.30308040603995323,
|
644 |
+
"rewards/random_math_reward": 0.4716050550341606,
|
645 |
+
"step": 53
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"completion_length": 889.1351852416992,
|
649 |
+
"epoch": 0.30230930720783766,
|
650 |
+
"grad_norm": 0.027262764051556587,
|
651 |
+
"kl": 0.0015797615051269531,
|
652 |
+
"learning_rate": 3e-07,
|
653 |
+
"loss": 0.0,
|
654 |
+
"reward": 0.49637374840676785,
|
655 |
+
"reward_std": 0.30440937727689743,
|
656 |
+
"rewards/random_math_reward": 0.49637374840676785,
|
657 |
+
"step": 54
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"completion_length": 859.5165557861328,
|
661 |
+
"epoch": 0.3079076277116865,
|
662 |
+
"grad_norm": 0.013877746649086475,
|
663 |
+
"kl": 0.0005941390991210938,
|
664 |
+
"learning_rate": 3e-07,
|
665 |
+
"loss": 0.0,
|
666 |
+
"reward": 0.4874963089823723,
|
667 |
+
"reward_std": 0.2997851762920618,
|
668 |
+
"rewards/random_math_reward": 0.4874963089823723,
|
669 |
+
"step": 55
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"completion_length": 886.5854339599609,
|
673 |
+
"epoch": 0.31350594821553535,
|
674 |
+
"grad_norm": 0.024866046383976936,
|
675 |
+
"kl": 0.000647425651550293,
|
676 |
+
"learning_rate": 3e-07,
|
677 |
+
"loss": 0.0,
|
678 |
+
"reward": 0.46163152530789375,
|
679 |
+
"reward_std": 0.2887133536860347,
|
680 |
+
"rewards/random_math_reward": 0.46163152530789375,
|
681 |
+
"step": 56
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"completion_length": 863.1759986877441,
|
685 |
+
"epoch": 0.3191042687193842,
|
686 |
+
"grad_norm": 0.023259082809090614,
|
687 |
+
"kl": 0.0006357431411743164,
|
688 |
+
"learning_rate": 3e-07,
|
689 |
+
"loss": 0.0,
|
690 |
+
"reward": 0.4782671481370926,
|
691 |
+
"reward_std": 0.29867998976260424,
|
692 |
+
"rewards/random_math_reward": 0.4782671481370926,
|
693 |
+
"step": 57
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"completion_length": 895.409423828125,
|
697 |
+
"epoch": 0.32470258922323303,
|
698 |
+
"grad_norm": 0.02394162304699421,
|
699 |
+
"kl": 0.0007455348968505859,
|
700 |
+
"learning_rate": 3e-07,
|
701 |
+
"loss": 0.0,
|
702 |
+
"reward": 0.4420376904308796,
|
703 |
+
"reward_std": 0.30142530612647533,
|
704 |
+
"rewards/random_math_reward": 0.4420376904308796,
|
705 |
+
"step": 58
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"completion_length": 933.6810913085938,
|
709 |
+
"epoch": 0.33030090972708187,
|
710 |
+
"grad_norm": 0.022286556661128998,
|
711 |
+
"kl": 0.0007117986679077148,
|
712 |
+
"learning_rate": 3e-07,
|
713 |
+
"loss": 0.0,
|
714 |
+
"reward": 0.48266960494220257,
|
715 |
+
"reward_std": 0.2849938729777932,
|
716 |
+
"rewards/random_math_reward": 0.48266960494220257,
|
717 |
+
"step": 59
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"completion_length": 906.8890190124512,
|
721 |
+
"epoch": 0.3358992302309307,
|
722 |
+
"grad_norm": 0.018822669982910156,
|
723 |
+
"kl": 0.000682830810546875,
|
724 |
+
"learning_rate": 3e-07,
|
725 |
+
"loss": 0.0,
|
726 |
+
"reward": 0.487277016043663,
|
727 |
+
"reward_std": 0.27959814574569464,
|
728 |
+
"rewards/random_math_reward": 0.487277016043663,
|
729 |
+
"step": 60
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"completion_length": 864.5459022521973,
|
733 |
+
"epoch": 0.34149755073477955,
|
734 |
+
"grad_norm": 0.07483907043933868,
|
735 |
+
"kl": 0.0009076595306396484,
|
736 |
+
"learning_rate": 3e-07,
|
737 |
+
"loss": 0.0,
|
738 |
+
"reward": 0.5487107969820499,
|
739 |
+
"reward_std": 0.29574476182460785,
|
740 |
+
"rewards/random_math_reward": 0.5487107969820499,
|
741 |
+
"step": 61
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"completion_length": 946.0178413391113,
|
745 |
+
"epoch": 0.3470958712386284,
|
746 |
+
"grad_norm": 0.04614647850394249,
|
747 |
+
"kl": 0.0015153884887695312,
|
748 |
+
"learning_rate": 3e-07,
|
749 |
+
"loss": 0.0,
|
750 |
+
"reward": 0.5009770151227713,
|
751 |
+
"reward_std": 0.29892334900796413,
|
752 |
+
"rewards/random_math_reward": 0.5009770151227713,
|
753 |
+
"step": 62
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"completion_length": 929.1989631652832,
|
757 |
+
"epoch": 0.35269419174247724,
|
758 |
+
"grad_norm": 0.02183196134865284,
|
759 |
+
"kl": 0.0007126331329345703,
|
760 |
+
"learning_rate": 3e-07,
|
761 |
+
"loss": 0.0,
|
762 |
+
"reward": 0.4849752429872751,
|
763 |
+
"reward_std": 0.29463311191648245,
|
764 |
+
"rewards/random_math_reward": 0.4849752429872751,
|
765 |
+
"step": 63
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"completion_length": 911.9004974365234,
|
769 |
+
"epoch": 0.3582925122463261,
|
770 |
+
"grad_norm": 0.02410600334405899,
|
771 |
+
"kl": 0.0010197162628173828,
|
772 |
+
"learning_rate": 3e-07,
|
773 |
+
"loss": 0.0,
|
774 |
+
"reward": 0.4673476442694664,
|
775 |
+
"reward_std": 0.27815896179527044,
|
776 |
+
"rewards/random_math_reward": 0.4673476442694664,
|
777 |
+
"step": 64
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"completion_length": 885.8609504699707,
|
781 |
+
"epoch": 0.363890832750175,
|
782 |
+
"grad_norm": 0.013846021145582199,
|
783 |
+
"kl": 0.0008647441864013672,
|
784 |
+
"learning_rate": 3e-07,
|
785 |
+
"loss": 0.0,
|
786 |
+
"reward": 0.47511172853410244,
|
787 |
+
"reward_std": 0.29065939225256443,
|
788 |
+
"rewards/random_math_reward": 0.47511172853410244,
|
789 |
+
"step": 65
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"completion_length": 896.8316116333008,
|
793 |
+
"epoch": 0.3694891532540238,
|
794 |
+
"grad_norm": 0.058244168758392334,
|
795 |
+
"kl": 0.0007791519165039062,
|
796 |
+
"learning_rate": 3e-07,
|
797 |
+
"loss": 0.0,
|
798 |
+
"reward": 0.49584819190204144,
|
799 |
+
"reward_std": 0.28557164780795574,
|
800 |
+
"rewards/random_math_reward": 0.49584819190204144,
|
801 |
+
"step": 66
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"completion_length": 915.7550888061523,
|
805 |
+
"epoch": 0.37508747375787266,
|
806 |
+
"grad_norm": 0.026778079569339752,
|
807 |
+
"kl": 0.0007394552230834961,
|
808 |
+
"learning_rate": 3e-07,
|
809 |
+
"loss": 0.0,
|
810 |
+
"reward": 0.4666522778570652,
|
811 |
+
"reward_std": 0.2651451360434294,
|
812 |
+
"rewards/random_math_reward": 0.4666522778570652,
|
813 |
+
"step": 67
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"completion_length": 817.3571281433105,
|
817 |
+
"epoch": 0.3806857942617215,
|
818 |
+
"grad_norm": 0.04487188532948494,
|
819 |
+
"kl": 0.002661585807800293,
|
820 |
+
"learning_rate": 3e-07,
|
821 |
+
"loss": 0.0,
|
822 |
+
"reward": 0.4737847317010164,
|
823 |
+
"reward_std": 0.2716279961168766,
|
824 |
+
"rewards/random_math_reward": 0.4737847317010164,
|
825 |
+
"step": 68
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"completion_length": 967.4578742980957,
|
829 |
+
"epoch": 0.38628411476557034,
|
830 |
+
"grad_norm": 0.012447608634829521,
|
831 |
+
"kl": 0.000609278678894043,
|
832 |
+
"learning_rate": 3e-07,
|
833 |
+
"loss": 0.0,
|
834 |
+
"reward": 0.4469184931367636,
|
835 |
+
"reward_std": 0.2811002554371953,
|
836 |
+
"rewards/random_math_reward": 0.4469184931367636,
|
837 |
+
"step": 69
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"completion_length": 932.1237030029297,
|
841 |
+
"epoch": 0.3918824352694192,
|
842 |
+
"grad_norm": 0.011375661008059978,
|
843 |
+
"kl": 0.0006630420684814453,
|
844 |
+
"learning_rate": 3e-07,
|
845 |
+
"loss": 0.0,
|
846 |
+
"reward": 0.458757933229208,
|
847 |
+
"reward_std": 0.3028138969093561,
|
848 |
+
"rewards/random_math_reward": 0.458757933229208,
|
849 |
+
"step": 70
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"completion_length": 871.3660583496094,
|
853 |
+
"epoch": 0.397480755773268,
|
854 |
+
"grad_norm": 0.010783006437122822,
|
855 |
+
"kl": 0.0007634162902832031,
|
856 |
+
"learning_rate": 3e-07,
|
857 |
+
"loss": 0.0,
|
858 |
+
"reward": 0.4868381731212139,
|
859 |
+
"reward_std": 0.28059179708361626,
|
860 |
+
"rewards/random_math_reward": 0.4868381731212139,
|
861 |
+
"step": 71
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"completion_length": 880.8915634155273,
|
865 |
+
"epoch": 0.40307907627711687,
|
866 |
+
"grad_norm": 0.024310071021318436,
|
867 |
+
"kl": 0.0012193918228149414,
|
868 |
+
"learning_rate": 3e-07,
|
869 |
+
"loss": 0.0,
|
870 |
+
"reward": 0.4670300707221031,
|
871 |
+
"reward_std": 0.28627045452594757,
|
872 |
+
"rewards/random_math_reward": 0.4670300707221031,
|
873 |
+
"step": 72
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"completion_length": 848.394115447998,
|
877 |
+
"epoch": 0.4086773967809657,
|
878 |
+
"grad_norm": 0.03577808663249016,
|
879 |
+
"kl": 0.0011832714080810547,
|
880 |
+
"learning_rate": 3e-07,
|
881 |
+
"loss": 0.0,
|
882 |
+
"reward": 0.4628731273114681,
|
883 |
+
"reward_std": 0.2926492039114237,
|
884 |
+
"rewards/random_math_reward": 0.4628731273114681,
|
885 |
+
"step": 73
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"completion_length": 850.6415634155273,
|
889 |
+
"epoch": 0.41427571728481455,
|
890 |
+
"grad_norm": 0.02307233400642872,
|
891 |
+
"kl": 0.0011417865753173828,
|
892 |
+
"learning_rate": 3e-07,
|
893 |
+
"loss": 0.0,
|
894 |
+
"reward": 0.48236627131700516,
|
895 |
+
"reward_std": 0.2867990182712674,
|
896 |
+
"rewards/random_math_reward": 0.48236627131700516,
|
897 |
+
"step": 74
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"completion_length": 935.357120513916,
|
901 |
+
"epoch": 0.4198740377886634,
|
902 |
+
"grad_norm": 0.009285389445722103,
|
903 |
+
"kl": 0.0006787776947021484,
|
904 |
+
"learning_rate": 3e-07,
|
905 |
+
"loss": 0.0,
|
906 |
+
"reward": 0.48846207931637764,
|
907 |
+
"reward_std": 0.28832482267171144,
|
908 |
+
"rewards/random_math_reward": 0.48846207931637764,
|
909 |
+
"step": 75
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"completion_length": 897.8532943725586,
|
913 |
+
"epoch": 0.42547235829251223,
|
914 |
+
"grad_norm": 0.06958639621734619,
|
915 |
+
"kl": 0.0009503364562988281,
|
916 |
+
"learning_rate": 3e-07,
|
917 |
+
"loss": 0.0,
|
918 |
+
"reward": 0.5029652137309313,
|
919 |
+
"reward_std": 0.2956245709210634,
|
920 |
+
"rewards/random_math_reward": 0.5029652137309313,
|
921 |
+
"step": 76
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"completion_length": 861.1275329589844,
|
925 |
+
"epoch": 0.4310706787963611,
|
926 |
+
"grad_norm": 0.019943566992878914,
|
927 |
+
"kl": 0.001253366470336914,
|
928 |
+
"learning_rate": 3e-07,
|
929 |
+
"loss": 0.0,
|
930 |
+
"reward": 0.5312744900584221,
|
931 |
+
"reward_std": 0.2928897039964795,
|
932 |
+
"rewards/random_math_reward": 0.5312744900584221,
|
933 |
+
"step": 77
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"completion_length": 924.6313591003418,
|
937 |
+
"epoch": 0.4366689993002099,
|
938 |
+
"grad_norm": 0.01711793802678585,
|
939 |
+
"kl": 0.0007042884826660156,
|
940 |
+
"learning_rate": 3e-07,
|
941 |
+
"loss": 0.0,
|
942 |
+
"reward": 0.49481588415801525,
|
943 |
+
"reward_std": 0.29031859524548054,
|
944 |
+
"rewards/random_math_reward": 0.49481588415801525,
|
945 |
+
"step": 78
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"completion_length": 842.0395202636719,
|
949 |
+
"epoch": 0.44226731980405876,
|
950 |
+
"grad_norm": 0.018647639080882072,
|
951 |
+
"kl": 0.0007382631301879883,
|
952 |
+
"learning_rate": 3e-07,
|
953 |
+
"loss": 0.0,
|
954 |
+
"reward": 0.5070081520825624,
|
955 |
+
"reward_std": 0.2859943201765418,
|
956 |
+
"rewards/random_math_reward": 0.5070081520825624,
|
957 |
+
"step": 79
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"completion_length": 895.3583946228027,
|
961 |
+
"epoch": 0.44786564030790765,
|
962 |
+
"grad_norm": 0.026943529024720192,
|
963 |
+
"kl": 0.0007255077362060547,
|
964 |
+
"learning_rate": 3e-07,
|
965 |
+
"loss": 0.0,
|
966 |
+
"reward": 0.48258678428828716,
|
967 |
+
"reward_std": 0.2774320160970092,
|
968 |
+
"rewards/random_math_reward": 0.48258678428828716,
|
969 |
+
"step": 80
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"completion_length": 937.7754783630371,
|
973 |
+
"epoch": 0.4534639608117565,
|
974 |
+
"grad_norm": 0.015870269387960434,
|
975 |
+
"kl": 0.0008311271667480469,
|
976 |
+
"learning_rate": 3e-07,
|
977 |
+
"loss": 0.0,
|
978 |
+
"reward": 0.4687965828925371,
|
979 |
+
"reward_std": 0.2817834969609976,
|
980 |
+
"rewards/random_math_reward": 0.4687965828925371,
|
981 |
+
"step": 81
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"completion_length": 835.7397804260254,
|
985 |
+
"epoch": 0.45906228131560534,
|
986 |
+
"grad_norm": 0.06118820607662201,
|
987 |
+
"kl": 0.0011771917343139648,
|
988 |
+
"learning_rate": 3e-07,
|
989 |
+
"loss": 0.0,
|
990 |
+
"reward": 0.4703396111726761,
|
991 |
+
"reward_std": 0.29155910573899746,
|
992 |
+
"rewards/random_math_reward": 0.4703396111726761,
|
993 |
+
"step": 82
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"completion_length": 887.909423828125,
|
997 |
+
"epoch": 0.4646606018194542,
|
998 |
+
"grad_norm": 0.05378980189561844,
|
999 |
+
"kl": 0.0013784170150756836,
|
1000 |
+
"learning_rate": 3e-07,
|
1001 |
+
"loss": 0.0,
|
1002 |
+
"reward": 0.4672347716987133,
|
1003 |
+
"reward_std": 0.316370103508234,
|
1004 |
+
"rewards/random_math_reward": 0.4672347716987133,
|
1005 |
+
"step": 83
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"completion_length": 818.6708984375,
|
1009 |
+
"epoch": 0.470258922323303,
|
1010 |
+
"grad_norm": 0.05784986913204193,
|
1011 |
+
"kl": 0.0008500814437866211,
|
1012 |
+
"learning_rate": 3e-07,
|
1013 |
+
"loss": 0.0,
|
1014 |
+
"reward": 0.5053709652274847,
|
1015 |
+
"reward_std": 0.3026046808809042,
|
1016 |
+
"rewards/random_math_reward": 0.5053709652274847,
|
1017 |
+
"step": 84
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"completion_length": 926.3800888061523,
|
1021 |
+
"epoch": 0.47585724282715186,
|
1022 |
+
"grad_norm": 0.021458175033330917,
|
1023 |
+
"kl": 0.0008251667022705078,
|
1024 |
+
"learning_rate": 3e-07,
|
1025 |
+
"loss": 0.0,
|
1026 |
+
"reward": 0.47099834494292736,
|
1027 |
+
"reward_std": 0.30302479304373264,
|
1028 |
+
"rewards/random_math_reward": 0.47099834494292736,
|
1029 |
+
"step": 85
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"completion_length": 859.1288108825684,
|
1033 |
+
"epoch": 0.4814555633310007,
|
1034 |
+
"grad_norm": 0.019605984911322594,
|
1035 |
+
"kl": 0.0009077787399291992,
|
1036 |
+
"learning_rate": 3e-07,
|
1037 |
+
"loss": 0.0,
|
1038 |
+
"reward": 0.4812137298285961,
|
1039 |
+
"reward_std": 0.29327244497835636,
|
1040 |
+
"rewards/random_math_reward": 0.4812137298285961,
|
1041 |
+
"step": 86
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"completion_length": 908.1402816772461,
|
1045 |
+
"epoch": 0.48705388383484954,
|
1046 |
+
"grad_norm": 0.06367423385381699,
|
1047 |
+
"kl": 0.0011855363845825195,
|
1048 |
+
"learning_rate": 3e-07,
|
1049 |
+
"loss": 0.0,
|
1050 |
+
"reward": 0.4995248857885599,
|
1051 |
+
"reward_std": 0.293773477897048,
|
1052 |
+
"rewards/random_math_reward": 0.4995248857885599,
|
1053 |
+
"step": 87
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"completion_length": 879.8099327087402,
|
1057 |
+
"epoch": 0.4926522043386984,
|
1058 |
+
"grad_norm": 0.013439509086310863,
|
1059 |
+
"kl": 0.0009884834289550781,
|
1060 |
+
"learning_rate": 3e-07,
|
1061 |
+
"loss": 0.0,
|
1062 |
+
"reward": 0.4674531724303961,
|
1063 |
+
"reward_std": 0.28925504721701145,
|
1064 |
+
"rewards/random_math_reward": 0.4674531724303961,
|
1065 |
+
"step": 88
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"completion_length": 897.298454284668,
|
1069 |
+
"epoch": 0.4982505248425472,
|
1070 |
+
"grad_norm": 0.011524248868227005,
|
1071 |
+
"kl": 0.0013021230697631836,
|
1072 |
+
"learning_rate": 3e-07,
|
1073 |
+
"loss": 0.0,
|
1074 |
+
"reward": 0.46935696713626385,
|
1075 |
+
"reward_std": 0.28805949725210667,
|
1076 |
+
"rewards/random_math_reward": 0.46935696713626385,
|
1077 |
+
"step": 89
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"completion_length": 862.3762626647949,
|
1081 |
+
"epoch": 0.5038488453463961,
|
1082 |
+
"grad_norm": 0.01074186060577631,
|
1083 |
+
"kl": 0.0008319616317749023,
|
1084 |
+
"learning_rate": 3e-07,
|
1085 |
+
"loss": 0.0,
|
1086 |
+
"reward": 0.4534935001283884,
|
1087 |
+
"reward_std": 0.29410699382424355,
|
1088 |
+
"rewards/random_math_reward": 0.4534935001283884,
|
1089 |
+
"step": 90
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"completion_length": 903.1083946228027,
|
1093 |
+
"epoch": 0.509447165850245,
|
1094 |
+
"grad_norm": 0.20411504805088043,
|
1095 |
+
"kl": 0.0014219284057617188,
|
1096 |
+
"learning_rate": 3e-07,
|
1097 |
+
"loss": 0.0,
|
1098 |
+
"reward": 0.47694382816553116,
|
1099 |
+
"reward_std": 0.28339869249612093,
|
1100 |
+
"rewards/random_math_reward": 0.47694382816553116,
|
1101 |
+
"step": 91
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"completion_length": 922.6543235778809,
|
1105 |
+
"epoch": 0.5150454863540938,
|
1106 |
+
"grad_norm": 0.01232316717505455,
|
1107 |
+
"kl": 0.000966191291809082,
|
1108 |
+
"learning_rate": 3e-07,
|
1109 |
+
"loss": 0.0,
|
1110 |
+
"reward": 0.44490973837673664,
|
1111 |
+
"reward_std": 0.2793145142495632,
|
1112 |
+
"rewards/random_math_reward": 0.44490973837673664,
|
1113 |
+
"step": 92
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"completion_length": 911.021671295166,
|
1117 |
+
"epoch": 0.5206438068579426,
|
1118 |
+
"grad_norm": 0.012167483568191528,
|
1119 |
+
"kl": 0.0007963180541992188,
|
1120 |
+
"learning_rate": 3e-07,
|
1121 |
+
"loss": 0.0,
|
1122 |
+
"reward": 0.48554741591215134,
|
1123 |
+
"reward_std": 0.2934918478131294,
|
1124 |
+
"rewards/random_math_reward": 0.48554741591215134,
|
1125 |
+
"step": 93
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"completion_length": 939.8800773620605,
|
1129 |
+
"epoch": 0.5262421273617914,
|
1130 |
+
"grad_norm": 0.009945104829967022,
|
1131 |
+
"kl": 0.0008685588836669922,
|
1132 |
+
"learning_rate": 3e-07,
|
1133 |
+
"loss": 0.0,
|
1134 |
+
"reward": 0.47484579868614674,
|
1135 |
+
"reward_std": 0.30168304964900017,
|
1136 |
+
"rewards/random_math_reward": 0.47484579868614674,
|
1137 |
+
"step": 94
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"completion_length": 906.4119720458984,
|
1141 |
+
"epoch": 0.5318404478656403,
|
1142 |
+
"grad_norm": 0.010836634784936905,
|
1143 |
+
"kl": 0.0007404088973999023,
|
1144 |
+
"learning_rate": 3e-07,
|
1145 |
+
"loss": 0.0,
|
1146 |
+
"reward": 0.47092380560934544,
|
1147 |
+
"reward_std": 0.28657434694468975,
|
1148 |
+
"rewards/random_math_reward": 0.47092380560934544,
|
1149 |
+
"step": 95
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"completion_length": 883.8583946228027,
|
1153 |
+
"epoch": 0.5374387683694891,
|
1154 |
+
"grad_norm": 0.035804830491542816,
|
1155 |
+
"kl": 0.0007826089859008789,
|
1156 |
+
"learning_rate": 3e-07,
|
1157 |
+
"loss": 0.0,
|
1158 |
+
"reward": 0.4703601971268654,
|
1159 |
+
"reward_std": 0.28724440187215805,
|
1160 |
+
"rewards/random_math_reward": 0.4703601971268654,
|
1161 |
+
"step": 96
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"completion_length": 880.0191192626953,
|
1165 |
+
"epoch": 0.543037088873338,
|
1166 |
+
"grad_norm": 0.06715273857116699,
|
1167 |
+
"kl": 0.0016443729400634766,
|
1168 |
+
"learning_rate": 3e-07,
|
1169 |
+
"loss": 0.0,
|
1170 |
+
"reward": 0.5048227999359369,
|
1171 |
+
"reward_std": 0.29030876979231834,
|
1172 |
+
"rewards/random_math_reward": 0.5048227999359369,
|
1173 |
+
"step": 97
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"completion_length": 898.9642677307129,
|
1177 |
+
"epoch": 0.5486354093771868,
|
1178 |
+
"grad_norm": 0.014051802456378937,
|
1179 |
+
"kl": 0.001214146614074707,
|
1180 |
+
"learning_rate": 3e-07,
|
1181 |
+
"loss": 0.0,
|
1182 |
+
"reward": 0.49155336059629917,
|
1183 |
+
"reward_std": 0.2932043820619583,
|
1184 |
+
"rewards/random_math_reward": 0.49155336059629917,
|
1185 |
+
"step": 98
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"completion_length": 854.6913032531738,
|
1189 |
+
"epoch": 0.5542337298810357,
|
1190 |
+
"grad_norm": 0.01157184038311243,
|
1191 |
+
"kl": 0.0010590553283691406,
|
1192 |
+
"learning_rate": 3e-07,
|
1193 |
+
"loss": 0.0,
|
1194 |
+
"reward": 0.45419391617178917,
|
1195 |
+
"reward_std": 0.28226044587790966,
|
1196 |
+
"rewards/random_math_reward": 0.45419391617178917,
|
1197 |
+
"step": 99
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"completion_length": 902.7282943725586,
|
1201 |
+
"epoch": 0.5598320503848845,
|
1202 |
+
"grad_norm": 0.11193796992301941,
|
1203 |
+
"kl": 0.0011587142944335938,
|
1204 |
+
"learning_rate": 3e-07,
|
1205 |
+
"loss": 0.0,
|
1206 |
+
"reward": 0.46381357870996,
|
1207 |
+
"reward_std": 0.27888650726526976,
|
1208 |
+
"rewards/random_math_reward": 0.46381357870996,
|
1209 |
+
"step": 100
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"completion_length": 873.6173210144043,
|
1213 |
+
"epoch": 0.5654303708887334,
|
1214 |
+
"grad_norm": 0.02095395140349865,
|
1215 |
+
"kl": 0.0009194612503051758,
|
1216 |
+
"learning_rate": 3e-07,
|
1217 |
+
"loss": 0.0,
|
1218 |
+
"reward": 0.4897339139133692,
|
1219 |
+
"reward_std": 0.27832474932074547,
|
1220 |
+
"rewards/random_math_reward": 0.4897339139133692,
|
1221 |
+
"step": 101
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"completion_length": 914.6849250793457,
|
1225 |
+
"epoch": 0.5710286913925823,
|
1226 |
+
"grad_norm": 0.04229766130447388,
|
1227 |
+
"kl": 0.0011234283447265625,
|
1228 |
+
"learning_rate": 3e-07,
|
1229 |
+
"loss": 0.0,
|
1230 |
+
"reward": 0.48241828568279743,
|
1231 |
+
"reward_std": 0.2899211458861828,
|
1232 |
+
"rewards/random_math_reward": 0.48241828568279743,
|
1233 |
+
"step": 102
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"completion_length": 888.3277778625488,
|
1237 |
+
"epoch": 0.5766270118964311,
|
1238 |
+
"grad_norm": 0.0680854320526123,
|
1239 |
+
"kl": 0.0012063980102539062,
|
1240 |
+
"learning_rate": 3e-07,
|
1241 |
+
"loss": 0.0,
|
1242 |
+
"reward": 0.4864093214273453,
|
1243 |
+
"reward_std": 0.2803313685581088,
|
1244 |
+
"rewards/random_math_reward": 0.4864093214273453,
|
1245 |
+
"step": 103
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"completion_length": 930.9400291442871,
|
1249 |
+
"epoch": 0.58222533240028,
|
1250 |
+
"grad_norm": 0.02672196552157402,
|
1251 |
+
"kl": 0.0008995532989501953,
|
1252 |
+
"learning_rate": 3e-07,
|
1253 |
+
"loss": 0.0,
|
1254 |
+
"reward": 0.47334628365933895,
|
1255 |
+
"reward_std": 0.2828089501708746,
|
1256 |
+
"rewards/random_math_reward": 0.47334628365933895,
|
1257 |
+
"step": 104
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"completion_length": 865.7499847412109,
|
1261 |
+
"epoch": 0.5878236529041287,
|
1262 |
+
"grad_norm": 0.010435185395181179,
|
1263 |
+
"kl": 0.0008490085601806641,
|
1264 |
+
"learning_rate": 3e-07,
|
1265 |
+
"loss": 0.0,
|
1266 |
+
"reward": 0.4868275187909603,
|
1267 |
+
"reward_std": 0.2970134112983942,
|
1268 |
+
"rewards/random_math_reward": 0.4868275187909603,
|
1269 |
+
"step": 105
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"completion_length": 860.4770202636719,
|
1273 |
+
"epoch": 0.5934219734079776,
|
1274 |
+
"grad_norm": 0.023035289719700813,
|
1275 |
+
"kl": 0.0009222030639648438,
|
1276 |
+
"learning_rate": 3e-07,
|
1277 |
+
"loss": 0.0,
|
1278 |
+
"reward": 0.4827886149287224,
|
1279 |
+
"reward_std": 0.2927941419184208,
|
1280 |
+
"rewards/random_math_reward": 0.4827886149287224,
|
1281 |
+
"step": 106
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"completion_length": 926.4259948730469,
|
1285 |
+
"epoch": 0.5990202939118264,
|
1286 |
+
"grad_norm": 0.01681309938430786,
|
1287 |
+
"kl": 0.0008640289306640625,
|
1288 |
+
"learning_rate": 3e-07,
|
1289 |
+
"loss": 0.0,
|
1290 |
+
"reward": 0.46561466343700886,
|
1291 |
+
"reward_std": 0.2794105224311352,
|
1292 |
+
"rewards/random_math_reward": 0.46561466343700886,
|
1293 |
+
"step": 107
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"completion_length": 899.8622245788574,
|
1297 |
+
"epoch": 0.6046186144156753,
|
1298 |
+
"grad_norm": 0.010567005723714828,
|
1299 |
+
"kl": 0.0010676383972167969,
|
1300 |
+
"learning_rate": 3e-07,
|
1301 |
+
"loss": 0.0,
|
1302 |
+
"reward": 0.4655596222728491,
|
1303 |
+
"reward_std": 0.27886725403368473,
|
1304 |
+
"rewards/random_math_reward": 0.4655596222728491,
|
1305 |
+
"step": 108
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"completion_length": 939.2283058166504,
|
1309 |
+
"epoch": 0.6102169349195241,
|
1310 |
+
"grad_norm": 0.07191047817468643,
|
1311 |
+
"kl": 0.0011771917343139648,
|
1312 |
+
"learning_rate": 3e-07,
|
1313 |
+
"loss": 0.0,
|
1314 |
+
"reward": 0.4728291556239128,
|
1315 |
+
"reward_std": 0.2772167157381773,
|
1316 |
+
"rewards/random_math_reward": 0.4728291556239128,
|
1317 |
+
"step": 109
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"completion_length": 825.8698749542236,
|
1321 |
+
"epoch": 0.615815255423373,
|
1322 |
+
"grad_norm": 0.02628973312675953,
|
1323 |
+
"kl": 0.0011527538299560547,
|
1324 |
+
"learning_rate": 3e-07,
|
1325 |
+
"loss": 0.0,
|
1326 |
+
"reward": 0.48204794339835644,
|
1327 |
+
"reward_std": 0.29616999346762896,
|
1328 |
+
"rewards/random_math_reward": 0.48204794339835644,
|
1329 |
+
"step": 110
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"completion_length": 907.2818717956543,
|
1333 |
+
"epoch": 0.6214135759272218,
|
1334 |
+
"grad_norm": 0.01321073155850172,
|
1335 |
+
"kl": 0.0007474422454833984,
|
1336 |
+
"learning_rate": 3e-07,
|
1337 |
+
"loss": 0.0,
|
1338 |
+
"reward": 0.4843390993773937,
|
1339 |
+
"reward_std": 0.2992616593837738,
|
1340 |
+
"rewards/random_math_reward": 0.4843390993773937,
|
1341 |
+
"step": 111
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"completion_length": 881.9884948730469,
|
1345 |
+
"epoch": 0.6270118964310707,
|
1346 |
+
"grad_norm": 0.011079943738877773,
|
1347 |
+
"kl": 0.0010025501251220703,
|
1348 |
+
"learning_rate": 3e-07,
|
1349 |
+
"loss": 0.0,
|
1350 |
+
"reward": 0.5278591625392437,
|
1351 |
+
"reward_std": 0.3031477089971304,
|
1352 |
+
"rewards/random_math_reward": 0.5278591625392437,
|
1353 |
+
"step": 112
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"completion_length": 889.1198768615723,
|
1357 |
+
"epoch": 0.6326102169349195,
|
1358 |
+
"grad_norm": 0.015584494918584824,
|
1359 |
+
"kl": 0.0008515119552612305,
|
1360 |
+
"learning_rate": 3e-07,
|
1361 |
+
"loss": 0.0,
|
1362 |
+
"reward": 0.5340252239257097,
|
1363 |
+
"reward_std": 0.28527406230568886,
|
1364 |
+
"rewards/random_math_reward": 0.5340252239257097,
|
1365 |
+
"step": 113
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"completion_length": 890.235954284668,
|
1369 |
+
"epoch": 0.6382085374387684,
|
1370 |
+
"grad_norm": 0.03280128538608551,
|
1371 |
+
"kl": 0.000990152359008789,
|
1372 |
+
"learning_rate": 3e-07,
|
1373 |
+
"loss": 0.0,
|
1374 |
+
"reward": 0.5209550634026527,
|
1375 |
+
"reward_std": 0.29494220949709415,
|
1376 |
+
"rewards/random_math_reward": 0.5209550634026527,
|
1377 |
+
"step": 114
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"completion_length": 865.9170799255371,
|
1381 |
+
"epoch": 0.6438068579426172,
|
1382 |
+
"grad_norm": 0.059104159474372864,
|
1383 |
+
"kl": 0.0009453296661376953,
|
1384 |
+
"learning_rate": 3e-07,
|
1385 |
+
"loss": 0.0,
|
1386 |
+
"reward": 0.5109865833073854,
|
1387 |
+
"reward_std": 0.29917749017477036,
|
1388 |
+
"rewards/random_math_reward": 0.5109865833073854,
|
1389 |
+
"step": 115
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"completion_length": 876.934928894043,
|
1393 |
+
"epoch": 0.6494051784464661,
|
1394 |
+
"grad_norm": 0.01903529092669487,
|
1395 |
+
"kl": 0.0008587837219238281,
|
1396 |
+
"learning_rate": 3e-07,
|
1397 |
+
"loss": 0.0,
|
1398 |
+
"reward": 0.500015264376998,
|
1399 |
+
"reward_std": 0.29237030632793903,
|
1400 |
+
"rewards/random_math_reward": 0.500015264376998,
|
1401 |
+
"step": 116
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"completion_length": 846.1517677307129,
|
1405 |
+
"epoch": 0.655003498950315,
|
1406 |
+
"grad_norm": 0.02293042466044426,
|
1407 |
+
"kl": 0.0009784698486328125,
|
1408 |
+
"learning_rate": 3e-07,
|
1409 |
+
"loss": 0.0,
|
1410 |
+
"reward": 0.48975357227027416,
|
1411 |
+
"reward_std": 0.2920750202611089,
|
1412 |
+
"rewards/random_math_reward": 0.48975357227027416,
|
1413 |
+
"step": 117
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"completion_length": 889.9859504699707,
|
1417 |
+
"epoch": 0.6606018194541637,
|
1418 |
+
"grad_norm": 0.018028084188699722,
|
1419 |
+
"kl": 0.0013837814331054688,
|
1420 |
+
"learning_rate": 3e-07,
|
1421 |
+
"loss": 0.0,
|
1422 |
+
"reward": 0.5070291068404913,
|
1423 |
+
"reward_std": 0.2938714809715748,
|
1424 |
+
"rewards/random_math_reward": 0.5070291068404913,
|
1425 |
+
"step": 118
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"completion_length": 891.4043159484863,
|
1429 |
+
"epoch": 0.6662001399580126,
|
1430 |
+
"grad_norm": 0.011308281682431698,
|
1431 |
+
"kl": 0.0008604526519775391,
|
1432 |
+
"learning_rate": 3e-07,
|
1433 |
+
"loss": 0.0,
|
1434 |
+
"reward": 0.4764967616647482,
|
1435 |
+
"reward_std": 0.3148739319294691,
|
1436 |
+
"rewards/random_math_reward": 0.4764967616647482,
|
1437 |
+
"step": 119
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"completion_length": 872.5395317077637,
|
1441 |
+
"epoch": 0.6717984604618614,
|
1442 |
+
"grad_norm": 0.0414012111723423,
|
1443 |
+
"kl": 0.0009286403656005859,
|
1444 |
+
"learning_rate": 3e-07,
|
1445 |
+
"loss": 0.0,
|
1446 |
+
"reward": 0.4626141209155321,
|
1447 |
+
"reward_std": 0.3029380030930042,
|
1448 |
+
"rewards/random_math_reward": 0.4626141209155321,
|
1449 |
+
"step": 120
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"completion_length": 907.8239593505859,
|
1453 |
+
"epoch": 0.6773967809657103,
|
1454 |
+
"grad_norm": 0.024403268471360207,
|
1455 |
+
"kl": 0.0008714199066162109,
|
1456 |
+
"learning_rate": 3e-07,
|
1457 |
+
"loss": 0.0,
|
1458 |
+
"reward": 0.463301295414567,
|
1459 |
+
"reward_std": 0.2877810364589095,
|
1460 |
+
"rewards/random_math_reward": 0.463301295414567,
|
1461 |
+
"step": 121
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"completion_length": 947.8214149475098,
|
1465 |
+
"epoch": 0.6829951014695591,
|
1466 |
+
"grad_norm": 0.03146574646234512,
|
1467 |
+
"kl": 0.0012885332107543945,
|
1468 |
+
"learning_rate": 3e-07,
|
1469 |
+
"loss": 0.0,
|
1470 |
+
"reward": 0.46076902747154236,
|
1471 |
+
"reward_std": 0.2793724099174142,
|
1472 |
+
"rewards/random_math_reward": 0.46076902747154236,
|
1473 |
+
"step": 122
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"completion_length": 909.1071243286133,
|
1477 |
+
"epoch": 0.688593421973408,
|
1478 |
+
"grad_norm": 0.01003959309309721,
|
1479 |
+
"kl": 0.0011519193649291992,
|
1480 |
+
"learning_rate": 3e-07,
|
1481 |
+
"loss": 0.0,
|
1482 |
+
"reward": 0.5079296790063381,
|
1483 |
+
"reward_std": 0.29765503481030464,
|
1484 |
+
"rewards/random_math_reward": 0.5079296790063381,
|
1485 |
+
"step": 123
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"completion_length": 861.1160545349121,
|
1489 |
+
"epoch": 0.6941917424772568,
|
1490 |
+
"grad_norm": 0.013797848485410213,
|
1491 |
+
"kl": 0.0010790824890136719,
|
1492 |
+
"learning_rate": 3e-07,
|
1493 |
+
"loss": 0.0,
|
1494 |
+
"reward": 0.4844306465238333,
|
1495 |
+
"reward_std": 0.2945317914709449,
|
1496 |
+
"rewards/random_math_reward": 0.4844306465238333,
|
1497 |
+
"step": 124
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"completion_length": 863.8520278930664,
|
1501 |
+
"epoch": 0.6997900629811057,
|
1502 |
+
"grad_norm": 0.012310285121202469,
|
1503 |
+
"kl": 0.0011372566223144531,
|
1504 |
+
"learning_rate": 3e-07,
|
1505 |
+
"loss": 0.0,
|
1506 |
+
"reward": 0.4732836168259382,
|
1507 |
+
"reward_std": 0.2942813113331795,
|
1508 |
+
"rewards/random_math_reward": 0.4732836168259382,
|
1509 |
+
"step": 125
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"completion_length": 881.832893371582,
|
1513 |
+
"epoch": 0.7053883834849545,
|
1514 |
+
"grad_norm": 0.28292930126190186,
|
1515 |
+
"kl": 0.0030515193939208984,
|
1516 |
+
"learning_rate": 3e-07,
|
1517 |
+
"loss": 0.0,
|
1518 |
+
"reward": 0.48056939989328384,
|
1519 |
+
"reward_std": 0.27455357648432255,
|
1520 |
+
"rewards/random_math_reward": 0.48056939989328384,
|
1521 |
+
"step": 126
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"completion_length": 855.8303375244141,
|
1525 |
+
"epoch": 0.7109867039888034,
|
1526 |
+
"grad_norm": 0.026784956455230713,
|
1527 |
+
"kl": 0.0010666847229003906,
|
1528 |
+
"learning_rate": 3e-07,
|
1529 |
+
"loss": 0.0,
|
1530 |
+
"reward": 0.47633388079702854,
|
1531 |
+
"reward_std": 0.27308547869324684,
|
1532 |
+
"rewards/random_math_reward": 0.47633388079702854,
|
1533 |
+
"step": 127
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"completion_length": 872.3571243286133,
|
1537 |
+
"epoch": 0.7165850244926522,
|
1538 |
+
"grad_norm": 0.027628231793642044,
|
1539 |
+
"kl": 0.0012966394424438477,
|
1540 |
+
"learning_rate": 3e-07,
|
1541 |
+
"loss": 0.0,
|
1542 |
+
"reward": 0.4544145315885544,
|
1543 |
+
"reward_std": 0.2810182133689523,
|
1544 |
+
"rewards/random_math_reward": 0.4544145315885544,
|
1545 |
+
"step": 128
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"completion_length": 880.8622207641602,
|
1549 |
+
"epoch": 0.722183344996501,
|
1550 |
+
"grad_norm": 0.011807740665972233,
|
1551 |
+
"kl": 0.0009188652038574219,
|
1552 |
+
"learning_rate": 3e-07,
|
1553 |
+
"loss": 0.0,
|
1554 |
+
"reward": 0.4832920003682375,
|
1555 |
+
"reward_std": 0.2904686816036701,
|
1556 |
+
"rewards/random_math_reward": 0.4832920003682375,
|
1557 |
+
"step": 129
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"completion_length": 890.7397804260254,
|
1561 |
+
"epoch": 0.72778166550035,
|
1562 |
+
"grad_norm": 0.00990369077771902,
|
1563 |
+
"kl": 0.0008499622344970703,
|
1564 |
+
"learning_rate": 3e-07,
|
1565 |
+
"loss": 0.0,
|
1566 |
+
"reward": 0.4763722326606512,
|
1567 |
+
"reward_std": 0.3048167824745178,
|
1568 |
+
"rewards/random_math_reward": 0.4763722326606512,
|
1569 |
+
"step": 130
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"completion_length": 881.3290634155273,
|
1573 |
+
"epoch": 0.7333799860041987,
|
1574 |
+
"grad_norm": 0.042855340987443924,
|
1575 |
+
"kl": 0.002415895462036133,
|
1576 |
+
"learning_rate": 3e-07,
|
1577 |
+
"loss": 0.0,
|
1578 |
+
"reward": 0.49098371155560017,
|
1579 |
+
"reward_std": 0.28425728902220726,
|
1580 |
+
"rewards/random_math_reward": 0.49098371155560017,
|
1581 |
+
"step": 131
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"completion_length": 920.1415672302246,
|
1585 |
+
"epoch": 0.7389783065080476,
|
1586 |
+
"grad_norm": 0.011931121349334717,
|
1587 |
+
"kl": 0.0009909868240356445,
|
1588 |
+
"learning_rate": 3e-07,
|
1589 |
+
"loss": 0.0,
|
1590 |
+
"reward": 0.49408636428415775,
|
1591 |
+
"reward_std": 0.30311523005366325,
|
1592 |
+
"rewards/random_math_reward": 0.49408636428415775,
|
1593 |
+
"step": 132
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"completion_length": 928.8456420898438,
|
1597 |
+
"epoch": 0.7445766270118964,
|
1598 |
+
"grad_norm": 0.11891764402389526,
|
1599 |
+
"kl": 0.0010557174682617188,
|
1600 |
+
"learning_rate": 3e-07,
|
1601 |
+
"loss": 0.0,
|
1602 |
+
"reward": 0.47669179551303387,
|
1603 |
+
"reward_std": 0.29571292363107204,
|
1604 |
+
"rewards/random_math_reward": 0.47669179551303387,
|
1605 |
+
"step": 133
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"completion_length": 840.7448806762695,
|
1609 |
+
"epoch": 0.7501749475157453,
|
1610 |
+
"grad_norm": 0.020906388759613037,
|
1611 |
+
"kl": 0.001192331314086914,
|
1612 |
+
"learning_rate": 3e-07,
|
1613 |
+
"loss": 0.0,
|
1614 |
+
"reward": 0.48422789201140404,
|
1615 |
+
"reward_std": 0.28880419582128525,
|
1616 |
+
"rewards/random_math_reward": 0.48422789201140404,
|
1617 |
+
"step": 134
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"completion_length": 924.7793121337891,
|
1621 |
+
"epoch": 0.7557732680195941,
|
1622 |
+
"grad_norm": 0.015085350722074509,
|
1623 |
+
"kl": 0.0009965896606445312,
|
1624 |
+
"learning_rate": 3e-07,
|
1625 |
+
"loss": 0.0,
|
1626 |
+
"reward": 0.48809418082237244,
|
1627 |
+
"reward_std": 0.30123256146907806,
|
1628 |
+
"rewards/random_math_reward": 0.48809418082237244,
|
1629 |
+
"step": 135
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"completion_length": 783.3507499694824,
|
1633 |
+
"epoch": 0.761371588523443,
|
1634 |
+
"grad_norm": 0.025510285049676895,
|
1635 |
+
"kl": 0.0011339187622070312,
|
1636 |
+
"learning_rate": 3e-07,
|
1637 |
+
"loss": 0.0,
|
1638 |
+
"reward": 0.4794926680624485,
|
1639 |
+
"reward_std": 0.29374638944864273,
|
1640 |
+
"rewards/random_math_reward": 0.4794926680624485,
|
1641 |
+
"step": 136
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"completion_length": 886.570140838623,
|
1645 |
+
"epoch": 0.7669699090272918,
|
1646 |
+
"grad_norm": 0.014409742318093777,
|
1647 |
+
"kl": 0.0010912418365478516,
|
1648 |
+
"learning_rate": 3e-07,
|
1649 |
+
"loss": 0.0,
|
1650 |
+
"reward": 0.44775343872606754,
|
1651 |
+
"reward_std": 0.27853819355368614,
|
1652 |
+
"rewards/random_math_reward": 0.44775343872606754,
|
1653 |
+
"step": 137
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"completion_length": 875.3928413391113,
|
1657 |
+
"epoch": 0.7725682295311407,
|
1658 |
+
"grad_norm": 0.009967821650207043,
|
1659 |
+
"kl": 0.001146078109741211,
|
1660 |
+
"learning_rate": 3e-07,
|
1661 |
+
"loss": 0.0,
|
1662 |
+
"reward": 0.4673925694078207,
|
1663 |
+
"reward_std": 0.289134263060987,
|
1664 |
+
"rewards/random_math_reward": 0.4673925694078207,
|
1665 |
+
"step": 138
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"completion_length": 856.2155380249023,
|
1669 |
+
"epoch": 0.7781665500349895,
|
1670 |
+
"grad_norm": 0.012912734411656857,
|
1671 |
+
"kl": 0.0009341239929199219,
|
1672 |
+
"learning_rate": 3e-07,
|
1673 |
+
"loss": 0.0,
|
1674 |
+
"reward": 0.5017714705318213,
|
1675 |
+
"reward_std": 0.28041696455329657,
|
1676 |
+
"rewards/random_math_reward": 0.5017714705318213,
|
1677 |
+
"step": 139
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"completion_length": 894.0050811767578,
|
1681 |
+
"epoch": 0.7837648705388384,
|
1682 |
+
"grad_norm": 0.08305728435516357,
|
1683 |
+
"kl": 0.0018918514251708984,
|
1684 |
+
"learning_rate": 3e-07,
|
1685 |
+
"loss": 0.0,
|
1686 |
+
"reward": 0.5223593860864639,
|
1687 |
+
"reward_std": 0.2958631496876478,
|
1688 |
+
"rewards/random_math_reward": 0.5223593860864639,
|
1689 |
+
"step": 140
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"completion_length": 881.410701751709,
|
1693 |
+
"epoch": 0.7893631910426872,
|
1694 |
+
"grad_norm": 0.009809349663555622,
|
1695 |
+
"kl": 0.0009772777557373047,
|
1696 |
+
"learning_rate": 3e-07,
|
1697 |
+
"loss": 0.0,
|
1698 |
+
"reward": 0.5037720259279013,
|
1699 |
+
"reward_std": 0.2979677114635706,
|
1700 |
+
"rewards/random_math_reward": 0.5037720259279013,
|
1701 |
+
"step": 141
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"completion_length": 840.1135063171387,
|
1705 |
+
"epoch": 0.794961511546536,
|
1706 |
+
"grad_norm": 0.018646089360117912,
|
1707 |
+
"kl": 0.001020193099975586,
|
1708 |
+
"learning_rate": 3e-07,
|
1709 |
+
"loss": 0.0,
|
1710 |
+
"reward": 0.5081987045705318,
|
1711 |
+
"reward_std": 0.29782584123313427,
|
1712 |
+
"rewards/random_math_reward": 0.5081987045705318,
|
1713 |
+
"step": 142
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"completion_length": 876.1058502197266,
|
1717 |
+
"epoch": 0.8005598320503848,
|
1718 |
+
"grad_norm": 0.024378400295972824,
|
1719 |
+
"kl": 0.0011475086212158203,
|
1720 |
+
"learning_rate": 3e-07,
|
1721 |
+
"loss": 0.0,
|
1722 |
+
"reward": 0.4988156743347645,
|
1723 |
+
"reward_std": 0.29589168168604374,
|
1724 |
+
"rewards/random_math_reward": 0.4988156743347645,
|
1725 |
+
"step": 143
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"completion_length": 891.9885063171387,
|
1729 |
+
"epoch": 0.8061581525542337,
|
1730 |
+
"grad_norm": 0.017726967111229897,
|
1731 |
+
"kl": 0.0011355876922607422,
|
1732 |
+
"learning_rate": 3e-07,
|
1733 |
+
"loss": 0.0,
|
1734 |
+
"reward": 0.49985454976558685,
|
1735 |
+
"reward_std": 0.2889725724235177,
|
1736 |
+
"rewards/random_math_reward": 0.49985454976558685,
|
1737 |
+
"step": 144
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"completion_length": 900.8316192626953,
|
1741 |
+
"epoch": 0.8117564730580826,
|
1742 |
+
"grad_norm": 0.01951918564736843,
|
1743 |
+
"kl": 0.0014090538024902344,
|
1744 |
+
"learning_rate": 3e-07,
|
1745 |
+
"loss": 0.0,
|
1746 |
+
"reward": 0.48107675835490227,
|
1747 |
+
"reward_std": 0.2852372843772173,
|
1748 |
+
"rewards/random_math_reward": 0.48107675835490227,
|
1749 |
+
"step": 145
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"completion_length": 899.4731903076172,
|
1753 |
+
"epoch": 0.8173547935619314,
|
1754 |
+
"grad_norm": 0.021214712411165237,
|
1755 |
+
"kl": 0.0010182857513427734,
|
1756 |
+
"learning_rate": 3e-07,
|
1757 |
+
"loss": 0.0,
|
1758 |
+
"reward": 0.4994645491242409,
|
1759 |
+
"reward_std": 0.2752206530421972,
|
1760 |
+
"rewards/random_math_reward": 0.4994645491242409,
|
1761 |
+
"step": 146
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"completion_length": 949.8775329589844,
|
1765 |
+
"epoch": 0.8229531140657803,
|
1766 |
+
"grad_norm": 0.010702384635806084,
|
1767 |
+
"kl": 0.0011107921600341797,
|
1768 |
+
"learning_rate": 3e-07,
|
1769 |
+
"loss": 0.0,
|
1770 |
+
"reward": 0.47683133371174335,
|
1771 |
+
"reward_std": 0.2850389126688242,
|
1772 |
+
"rewards/random_math_reward": 0.47683133371174335,
|
1773 |
+
"step": 147
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"completion_length": 890.5433540344238,
|
1777 |
+
"epoch": 0.8285514345696291,
|
1778 |
+
"grad_norm": 0.014014041982591152,
|
1779 |
+
"kl": 0.0009796619415283203,
|
1780 |
+
"learning_rate": 3e-07,
|
1781 |
+
"loss": 0.0,
|
1782 |
+
"reward": 0.45283058658242226,
|
1783 |
+
"reward_std": 0.2967394981533289,
|
1784 |
+
"rewards/random_math_reward": 0.45283058658242226,
|
1785 |
+
"step": 148
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"completion_length": 854.0229377746582,
|
1789 |
+
"epoch": 0.834149755073478,
|
1790 |
+
"grad_norm": 0.010618280619382858,
|
1791 |
+
"kl": 0.0011134147644042969,
|
1792 |
+
"learning_rate": 3e-07,
|
1793 |
+
"loss": 0.0,
|
1794 |
+
"reward": 0.46891826018691063,
|
1795 |
+
"reward_std": 0.2850739639252424,
|
1796 |
+
"rewards/random_math_reward": 0.46891826018691063,
|
1797 |
+
"step": 149
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"completion_length": 873.9553413391113,
|
1801 |
+
"epoch": 0.8397480755773268,
|
1802 |
+
"grad_norm": 0.03690403327345848,
|
1803 |
+
"kl": 0.0010218620300292969,
|
1804 |
+
"learning_rate": 3e-07,
|
1805 |
+
"loss": 0.0,
|
1806 |
+
"reward": 0.5085400156676769,
|
1807 |
+
"reward_std": 0.2830808274447918,
|
1808 |
+
"rewards/random_math_reward": 0.5085400156676769,
|
1809 |
+
"step": 150
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"completion_length": 927.468090057373,
|
1813 |
+
"epoch": 0.8453463960811757,
|
1814 |
+
"grad_norm": 0.017428407445549965,
|
1815 |
+
"kl": 0.000989675521850586,
|
1816 |
+
"learning_rate": 3e-07,
|
1817 |
+
"loss": 0.0,
|
1818 |
+
"reward": 0.4990678243339062,
|
1819 |
+
"reward_std": 0.2827162565663457,
|
1820 |
+
"rewards/random_math_reward": 0.4990678243339062,
|
1821 |
+
"step": 151
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"completion_length": 910.8379859924316,
|
1825 |
+
"epoch": 0.8509447165850245,
|
1826 |
+
"grad_norm": 0.017853064462542534,
|
1827 |
+
"kl": 0.0009360313415527344,
|
1828 |
+
"learning_rate": 3e-07,
|
1829 |
+
"loss": 0.0,
|
1830 |
+
"reward": 0.46421765722334385,
|
1831 |
+
"reward_std": 0.2790751438587904,
|
1832 |
+
"rewards/random_math_reward": 0.46421765722334385,
|
1833 |
+
"step": 152
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"completion_length": 886.9323768615723,
|
1837 |
+
"epoch": 0.8565430370888734,
|
1838 |
+
"grad_norm": 0.018860990181565285,
|
1839 |
+
"kl": 0.0011188983917236328,
|
1840 |
+
"learning_rate": 3e-07,
|
1841 |
+
"loss": 0.0,
|
1842 |
+
"reward": 0.47205423563718796,
|
1843 |
+
"reward_std": 0.28594095539301634,
|
1844 |
+
"rewards/random_math_reward": 0.47205423563718796,
|
1845 |
+
"step": 153
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"completion_length": 848.5089149475098,
|
1849 |
+
"epoch": 0.8621413575927221,
|
1850 |
+
"grad_norm": 0.020478500053286552,
|
1851 |
+
"kl": 0.0010101795196533203,
|
1852 |
+
"learning_rate": 3e-07,
|
1853 |
+
"loss": 0.0,
|
1854 |
+
"reward": 0.4954501297324896,
|
1855 |
+
"reward_std": 0.28822094202041626,
|
1856 |
+
"rewards/random_math_reward": 0.4954501297324896,
|
1857 |
+
"step": 154
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"completion_length": 873.7601776123047,
|
1861 |
+
"epoch": 0.867739678096571,
|
1862 |
+
"grad_norm": 0.014679434709250927,
|
1863 |
+
"kl": 0.001070261001586914,
|
1864 |
+
"learning_rate": 3e-07,
|
1865 |
+
"loss": 0.0,
|
1866 |
+
"reward": 0.48937808722257614,
|
1867 |
+
"reward_std": 0.28821886610239744,
|
1868 |
+
"rewards/random_math_reward": 0.48937808722257614,
|
1869 |
+
"step": 155
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"completion_length": 887.0267677307129,
|
1873 |
+
"epoch": 0.8733379986004198,
|
1874 |
+
"grad_norm": 0.053716812282800674,
|
1875 |
+
"kl": 0.0013840198516845703,
|
1876 |
+
"learning_rate": 3e-07,
|
1877 |
+
"loss": 0.0,
|
1878 |
+
"reward": 0.48024408891797066,
|
1879 |
+
"reward_std": 0.30272081680595875,
|
1880 |
+
"rewards/random_math_reward": 0.48024408891797066,
|
1881 |
+
"step": 156
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"completion_length": 910.788257598877,
|
1885 |
+
"epoch": 0.8789363191042687,
|
1886 |
+
"grad_norm": 0.03143594413995743,
|
1887 |
+
"kl": 0.0013470649719238281,
|
1888 |
+
"learning_rate": 3e-07,
|
1889 |
+
"loss": 0.0,
|
1890 |
+
"reward": 0.49199927039444447,
|
1891 |
+
"reward_std": 0.30107220634818077,
|
1892 |
+
"rewards/random_math_reward": 0.49199927039444447,
|
1893 |
+
"step": 157
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"completion_length": 844.5101852416992,
|
1897 |
+
"epoch": 0.8845346396081175,
|
1898 |
+
"grad_norm": 0.031151605769991875,
|
1899 |
+
"kl": 0.001325845718383789,
|
1900 |
+
"learning_rate": 3e-07,
|
1901 |
+
"loss": 0.0,
|
1902 |
+
"reward": 0.4829933065921068,
|
1903 |
+
"reward_std": 0.2935031168162823,
|
1904 |
+
"rewards/random_math_reward": 0.4829933065921068,
|
1905 |
+
"step": 158
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"completion_length": 911.2563629150391,
|
1909 |
+
"epoch": 0.8901329601119664,
|
1910 |
+
"grad_norm": 0.010499164462089539,
|
1911 |
+
"kl": 0.0009677410125732422,
|
1912 |
+
"learning_rate": 3e-07,
|
1913 |
+
"loss": 0.0,
|
1914 |
+
"reward": 0.46660212986171246,
|
1915 |
+
"reward_std": 0.30480547808110714,
|
1916 |
+
"rewards/random_math_reward": 0.46660212986171246,
|
1917 |
+
"step": 159
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"completion_length": 867.9106979370117,
|
1921 |
+
"epoch": 0.8957312806158153,
|
1922 |
+
"grad_norm": 0.039778802543878555,
|
1923 |
+
"kl": 0.0010061264038085938,
|
1924 |
+
"learning_rate": 3e-07,
|
1925 |
+
"loss": 0.0,
|
1926 |
+
"reward": 0.46561445854604244,
|
1927 |
+
"reward_std": 0.2867754641920328,
|
1928 |
+
"rewards/random_math_reward": 0.46561445854604244,
|
1929 |
+
"step": 160
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"completion_length": 891.145378112793,
|
1933 |
+
"epoch": 0.9013296011196641,
|
1934 |
+
"grad_norm": 0.013824980705976486,
|
1935 |
+
"kl": 0.0010936260223388672,
|
1936 |
+
"learning_rate": 3e-07,
|
1937 |
+
"loss": 0.0,
|
1938 |
+
"reward": 0.4558851607143879,
|
1939 |
+
"reward_std": 0.277794330380857,
|
1940 |
+
"rewards/random_math_reward": 0.4558851607143879,
|
1941 |
+
"step": 161
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"completion_length": 869.1186027526855,
|
1945 |
+
"epoch": 0.906927921623513,
|
1946 |
+
"grad_norm": 0.01410576980561018,
|
1947 |
+
"kl": 0.0011093616485595703,
|
1948 |
+
"learning_rate": 3e-07,
|
1949 |
+
"loss": 0.0,
|
1950 |
+
"reward": 0.48392108641564846,
|
1951 |
+
"reward_std": 0.2871867660433054,
|
1952 |
+
"rewards/random_math_reward": 0.48392108641564846,
|
1953 |
+
"step": 162
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"completion_length": 884.0267677307129,
|
1957 |
+
"epoch": 0.9125262421273618,
|
1958 |
+
"grad_norm": 0.01321236602962017,
|
1959 |
+
"kl": 0.0009493827819824219,
|
1960 |
+
"learning_rate": 3e-07,
|
1961 |
+
"loss": 0.0,
|
1962 |
+
"reward": 0.5128381866961718,
|
1963 |
+
"reward_std": 0.30100576020777225,
|
1964 |
+
"rewards/random_math_reward": 0.5128381866961718,
|
1965 |
+
"step": 163
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"completion_length": 813.4183502197266,
|
1969 |
+
"epoch": 0.9181245626312107,
|
1970 |
+
"grad_norm": 0.02240627259016037,
|
1971 |
+
"kl": 0.0012166500091552734,
|
1972 |
+
"learning_rate": 3e-07,
|
1973 |
+
"loss": 0.0,
|
1974 |
+
"reward": 0.5056673623621464,
|
1975 |
+
"reward_std": 0.30340027436614037,
|
1976 |
+
"rewards/random_math_reward": 0.5056673623621464,
|
1977 |
+
"step": 164
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"completion_length": 866.1339149475098,
|
1981 |
+
"epoch": 0.9237228831350595,
|
1982 |
+
"grad_norm": 0.01877676323056221,
|
1983 |
+
"kl": 0.000985860824584961,
|
1984 |
+
"learning_rate": 3e-07,
|
1985 |
+
"loss": 0.0,
|
1986 |
+
"reward": 0.4957231916487217,
|
1987 |
+
"reward_std": 0.28768617659807205,
|
1988 |
+
"rewards/random_math_reward": 0.4957231916487217,
|
1989 |
+
"step": 165
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"completion_length": 934.8022727966309,
|
1993 |
+
"epoch": 0.9293212036389084,
|
1994 |
+
"grad_norm": 0.03419911116361618,
|
1995 |
+
"kl": 0.001092672348022461,
|
1996 |
+
"learning_rate": 3e-07,
|
1997 |
+
"loss": 0.0,
|
1998 |
+
"reward": 0.4862586259841919,
|
1999 |
+
"reward_std": 0.28661127388477325,
|
2000 |
+
"rewards/random_math_reward": 0.4862586259841919,
|
2001 |
+
"step": 166
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"completion_length": 845.2384948730469,
|
2005 |
+
"epoch": 0.9349195241427571,
|
2006 |
+
"grad_norm": 0.016880100592970848,
|
2007 |
+
"kl": 0.0010738372802734375,
|
2008 |
+
"learning_rate": 3e-07,
|
2009 |
+
"loss": 0.0,
|
2010 |
+
"reward": 0.48645939491689205,
|
2011 |
+
"reward_std": 0.2838729955255985,
|
2012 |
+
"rewards/random_math_reward": 0.48645939491689205,
|
2013 |
+
"step": 167
|
2014 |
+
},
|
2015 |
+
{
|
2016 |
+
"completion_length": 897.2448921203613,
|
2017 |
+
"epoch": 0.940517844646606,
|
2018 |
+
"grad_norm": 0.03305617719888687,
|
2019 |
+
"kl": 0.0013968944549560547,
|
2020 |
+
"learning_rate": 3e-07,
|
2021 |
+
"loss": 0.0,
|
2022 |
+
"reward": 0.4894435331225395,
|
2023 |
+
"reward_std": 0.2995728589594364,
|
2024 |
+
"rewards/random_math_reward": 0.4894435331225395,
|
2025 |
+
"step": 168
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"completion_length": 870.5650291442871,
|
2029 |
+
"epoch": 0.9461161651504548,
|
2030 |
+
"grad_norm": 0.009322837926447392,
|
2031 |
+
"kl": 0.0010249614715576172,
|
2032 |
+
"learning_rate": 3e-07,
|
2033 |
+
"loss": 0.0,
|
2034 |
+
"reward": 0.5089151151478291,
|
2035 |
+
"reward_std": 0.30756222270429134,
|
2036 |
+
"rewards/random_math_reward": 0.5089151151478291,
|
2037 |
+
"step": 169
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"completion_length": 854.2805862426758,
|
2041 |
+
"epoch": 0.9517144856543037,
|
2042 |
+
"grad_norm": 0.0156830083578825,
|
2043 |
+
"kl": 0.000896453857421875,
|
2044 |
+
"learning_rate": 3e-07,
|
2045 |
+
"loss": 0.0,
|
2046 |
+
"reward": 0.4866387601941824,
|
2047 |
+
"reward_std": 0.29632874485105276,
|
2048 |
+
"rewards/random_math_reward": 0.4866387601941824,
|
2049 |
+
"step": 170
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"completion_length": 835.1109504699707,
|
2053 |
+
"epoch": 0.9573128061581525,
|
2054 |
+
"grad_norm": 0.04610283300280571,
|
2055 |
+
"kl": 0.0012865066528320312,
|
2056 |
+
"learning_rate": 3e-07,
|
2057 |
+
"loss": 0.0,
|
2058 |
+
"reward": 0.4992235377430916,
|
2059 |
+
"reward_std": 0.2944375704973936,
|
2060 |
+
"rewards/random_math_reward": 0.4992235377430916,
|
2061 |
+
"step": 171
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"completion_length": 885.7053337097168,
|
2065 |
+
"epoch": 0.9629111266620014,
|
2066 |
+
"grad_norm": 0.02425132691860199,
|
2067 |
+
"kl": 0.0011935234069824219,
|
2068 |
+
"learning_rate": 3e-07,
|
2069 |
+
"loss": 0.0,
|
2070 |
+
"reward": 0.5038886945694685,
|
2071 |
+
"reward_std": 0.28100786730647087,
|
2072 |
+
"rewards/random_math_reward": 0.5038886945694685,
|
2073 |
+
"step": 172
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"completion_length": 919.9604415893555,
|
2077 |
+
"epoch": 0.9685094471658502,
|
2078 |
+
"grad_norm": 0.011359083466231823,
|
2079 |
+
"kl": 0.0011434555053710938,
|
2080 |
+
"learning_rate": 3e-07,
|
2081 |
+
"loss": 0.0,
|
2082 |
+
"reward": 0.4733607657253742,
|
2083 |
+
"reward_std": 0.2893592659384012,
|
2084 |
+
"rewards/random_math_reward": 0.4733607657253742,
|
2085 |
+
"step": 173
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"completion_length": 816.8494758605957,
|
2089 |
+
"epoch": 0.9741077676696991,
|
2090 |
+
"grad_norm": 0.0354762077331543,
|
2091 |
+
"kl": 0.0011744499206542969,
|
2092 |
+
"learning_rate": 3e-07,
|
2093 |
+
"loss": 0.0,
|
2094 |
+
"reward": 0.47691468335688114,
|
2095 |
+
"reward_std": 0.28350450936704874,
|
2096 |
+
"rewards/random_math_reward": 0.47691468335688114,
|
2097 |
+
"step": 174
|
2098 |
+
},
|
2099 |
+
{
|
2100 |
+
"completion_length": 837.5076293945312,
|
2101 |
+
"epoch": 0.979706088173548,
|
2102 |
+
"grad_norm": 0.030416017398238182,
|
2103 |
+
"kl": 0.0010030269622802734,
|
2104 |
+
"learning_rate": 3e-07,
|
2105 |
+
"loss": 0.0,
|
2106 |
+
"reward": 0.49260007217526436,
|
2107 |
+
"reward_std": 0.265430293045938,
|
2108 |
+
"rewards/random_math_reward": 0.49260007217526436,
|
2109 |
+
"step": 175
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"completion_length": 887.9668235778809,
|
2113 |
+
"epoch": 0.9853044086773968,
|
2114 |
+
"grad_norm": 0.013739695772528648,
|
2115 |
+
"kl": 0.0010192394256591797,
|
2116 |
+
"learning_rate": 3e-07,
|
2117 |
+
"loss": 0.0,
|
2118 |
+
"reward": 0.526423504576087,
|
2119 |
+
"reward_std": 0.2828856185078621,
|
2120 |
+
"rewards/random_math_reward": 0.526423504576087,
|
2121 |
+
"step": 176
|
2122 |
+
},
|
2123 |
+
{
|
2124 |
+
"completion_length": 837.7933464050293,
|
2125 |
+
"epoch": 0.9909027291812457,
|
2126 |
+
"grad_norm": 0.014401717111468315,
|
2127 |
+
"kl": 0.0010166168212890625,
|
2128 |
+
"learning_rate": 3e-07,
|
2129 |
+
"loss": 0.0,
|
2130 |
+
"reward": 0.5026168543845415,
|
2131 |
+
"reward_std": 0.2906886078417301,
|
2132 |
+
"rewards/random_math_reward": 0.5026168543845415,
|
2133 |
+
"step": 177
|
2134 |
+
},
|
2135 |
+
{
|
2136 |
+
"completion_length": 915.8877296447754,
|
2137 |
+
"epoch": 0.9965010496850945,
|
2138 |
+
"grad_norm": 0.008807230740785599,
|
2139 |
+
"kl": 0.0009367465972900391,
|
2140 |
+
"learning_rate": 3e-07,
|
2141 |
+
"loss": 0.0,
|
2142 |
+
"reward": 0.4757802300155163,
|
2143 |
+
"reward_std": 0.29675872810184956,
|
2144 |
+
"rewards/random_math_reward": 0.4757802300155163,
|
2145 |
+
"step": 178
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 0.9965010496850945,
|
2149 |
+
"step": 178,
|
2150 |
+
"total_flos": 0.0,
|
2151 |
+
"train_loss": 8.003707675146196e-08,
|
2152 |
+
"train_runtime": 99592.7903,
|
2153 |
+
"train_samples_per_second": 0.201,
|
2154 |
+
"train_steps_per_second": 0.002
|
2155 |
+
}
|
2156 |
+
],
|
2157 |
+
"logging_steps": 1,
|
2158 |
+
"max_steps": 178,
|
2159 |
+
"num_input_tokens_seen": 0,
|
2160 |
+
"num_train_epochs": 1,
|
2161 |
+
"save_steps": 10,
|
2162 |
+
"stateful_callbacks": {
|
2163 |
+
"TrainerControl": {
|
2164 |
+
"args": {
|
2165 |
+
"should_epoch_stop": false,
|
2166 |
+
"should_evaluate": false,
|
2167 |
+
"should_log": false,
|
2168 |
+
"should_save": true,
|
2169 |
+
"should_training_stop": true
|
2170 |
+
},
|
2171 |
+
"attributes": {}
|
2172 |
+
}
|
2173 |
+
},
|
2174 |
+
"total_flos": 0.0,
|
2175 |
+
"train_batch_size": 1,
|
2176 |
+
"trial_name": null,
|
2177 |
+
"trial_params": null
|
2178 |
+
}
|