Update README.md
Browse files
README.md
CHANGED
@@ -14,4 +14,44 @@ tags:
|
|
14 |
|
15 |
---
|
16 |
|
17 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
---
|
16 |
|
17 |
+
#
|
18 |
+
|
19 |
+
# ๐ฆ TinyBERT IMDB Sentiment Analysis Model
|
20 |
+
|
21 |
+
This is a fine-tuned [TinyBERT](https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D) model for binary **sentiment classification** on a 5,000-sample subset of the [IMDB dataset](https://huggingface.co/datasets/imdb).
|
22 |
+
It predicts whether a movie review is **positive** or **negative**.
|
23 |
+
|
24 |
+
## ๐ง Model Details
|
25 |
+
|
26 |
+
- **Base model:** [`huawei-noah/TinyBERT_General_4L_312D`](https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D)
|
27 |
+
- **Task:** Sentiment Classification (Binary)
|
28 |
+
- **Dataset:** 4,000 training + 1,000 test samples from IMDB
|
29 |
+
- **Tokenizer:** `AutoTokenizer.from_pretrained('huawei-noah/TinyBERT_General_4L_312D')`
|
30 |
+
- **Max length:** 300 tokens
|
31 |
+
- **Batch size:** 64
|
32 |
+
- **Training framework:** Hugging Face `Trainer`
|
33 |
+
- **Device:** A100 GPU
|
34 |
+
|
35 |
+
## ๐ Evaluation Metrics
|
36 |
+
## ๐ Evaluation Metrics (on 1,000-sample test set)
|
37 |
+
|
38 |
+
| Metric | Value |
|
39 |
+
|-----------------------|----------|
|
40 |
+
| Accuracy | **88.02%** |
|
41 |
+
| Evaluation Loss | 0.2962 |
|
42 |
+
| Runtime | 30.9 sec |
|
43 |
+
| Samples per Second | 485 |
|
44 |
+
|
45 |
+
|
46 |
+
## ๐ How to Use
|
47 |
+
|
48 |
+
```python
|
49 |
+
from transformers import pipeline
|
50 |
+
|
51 |
+
classifier = pipeline(
|
52 |
+
"text-classification",
|
53 |
+
model="Harsha901/tinybert-imdb-sentiment-analysis-model"
|
54 |
+
)
|
55 |
+
|
56 |
+
result = classifier("This movie was absolutely amazing!")
|
57 |
+
print(result) # [{'label': 'LABEL_1', 'score': 0.98}]
|