Hazde lbourdois commited on
Commit
a6d408f
·
verified ·
1 Parent(s): 3bf37e9

Improve language tag (#1)

Browse files

- Improve language tag (b3c0fc4bb484d74e12f8a80a5a1cfed97c296941)


Co-authored-by: Loïck BOURDOIS <[email protected]>

Files changed (1) hide show
  1. README.md +66 -52
README.md CHANGED
@@ -4,60 +4,74 @@ license: apache-2.0
4
  base_model: Qwen/Qwen2.5-1.5B-Instruct
5
  tags:
6
  - generated_from_trainer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  model-index:
8
  - name: careerbot_PG6_Qwen_Qwen2.5-1.5B-Instruct_model_LoRA_5
9
  results: []
10
  ---
11
-
12
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
- should probably proofread and complete it, then remove this comment. -->
14
-
15
- # careerbot_PG6_Qwen_Qwen2.5-1.5B-Instruct_model_LoRA_5
16
-
17
- This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset.
18
- It achieves the following results on the evaluation set:
19
- - Loss: 3.4237
20
-
21
- ## Model description
22
-
23
- More information needed
24
-
25
- ## Intended uses & limitations
26
-
27
- More information needed
28
-
29
- ## Training and evaluation data
30
-
31
- More information needed
32
-
33
- ## Training procedure
34
-
35
- ### Training hyperparameters
36
-
37
- The following hyperparameters were used during training:
38
- - learning_rate: 1e-05
39
- - train_batch_size: 8
40
- - eval_batch_size: 16
41
- - seed: 42
42
- - gradient_accumulation_steps: 2
43
- - total_train_batch_size: 16
44
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
45
- - lr_scheduler_type: linear
46
- - lr_scheduler_warmup_steps: 500
47
- - num_epochs: 1
48
- - mixed_precision_training: Native AMP
49
-
50
- ### Training results
51
-
52
- | Training Loss | Epoch | Step | Validation Loss |
53
- |:-------------:|:------:|:----:|:---------------:|
54
- | 3.8954 | 0.9993 | 673 | 3.4237 |
55
-
56
-
57
- ### Framework versions
58
-
59
- - PEFT 0.13.2
60
- - Transformers 4.46.1
61
- - Pytorch 2.5.0+cu124
62
- - Datasets 2.19.0
63
  - Tokenizers 0.20.1
 
4
  base_model: Qwen/Qwen2.5-1.5B-Instruct
5
  tags:
6
  - generated_from_trainer
7
+ language:
8
+ - zho
9
+ - eng
10
+ - fra
11
+ - spa
12
+ - por
13
+ - deu
14
+ - ita
15
+ - rus
16
+ - jpn
17
+ - kor
18
+ - vie
19
+ - tha
20
+ - ara
21
  model-index:
22
  - name: careerbot_PG6_Qwen_Qwen2.5-1.5B-Instruct_model_LoRA_5
23
  results: []
24
  ---
25
+
26
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
27
+ should probably proofread and complete it, then remove this comment. -->
28
+
29
+ # careerbot_PG6_Qwen_Qwen2.5-1.5B-Instruct_model_LoRA_5
30
+
31
+ This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset.
32
+ It achieves the following results on the evaluation set:
33
+ - Loss: 3.4237
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 1e-05
53
+ - train_batch_size: 8
54
+ - eval_batch_size: 16
55
+ - seed: 42
56
+ - gradient_accumulation_steps: 2
57
+ - total_train_batch_size: 16
58
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
59
+ - lr_scheduler_type: linear
60
+ - lr_scheduler_warmup_steps: 500
61
+ - num_epochs: 1
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss |
67
+ |:-------------:|:------:|:----:|:---------------:|
68
+ | 3.8954 | 0.9993 | 673 | 3.4237 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - PEFT 0.13.2
74
+ - Transformers 4.46.1
75
+ - Pytorch 2.5.0+cu124
76
+ - Datasets 2.19.0
77
  - Tokenizers 0.20.1