Update handler.py
Browse files- handler.py +149 -166
handler.py
CHANGED
@@ -75,11 +75,11 @@ class EndpointHandler:
|
|
75 |
logger.info(f"Requested duration: {duration} seconds")
|
76 |
|
77 |
# Generate audio
|
78 |
-
if duration <= self.max_segment_duration: # For short durations, generate in one go
|
79 |
audio_output = self._generate_short_audio(prompt, duration, parameters)
|
80 |
else:
|
81 |
-
# Use
|
82 |
-
audio_output = self.
|
83 |
|
84 |
# Monitor GPU memory after generation
|
85 |
allocated = torch.cuda.memory_allocated() / 1e9
|
@@ -137,8 +137,7 @@ class EndpointHandler:
|
|
137 |
|
138 |
# Generate audio
|
139 |
logger.info(f"Generation parameters: {generation_kwargs}")
|
140 |
-
|
141 |
-
outputs = self.model.generate(**inputs, **generation_kwargs)
|
142 |
|
143 |
# Return audio
|
144 |
return outputs[0].cpu().numpy()
|
@@ -157,21 +156,20 @@ class EndpointHandler:
|
|
157 |
).to("cuda")
|
158 |
|
159 |
# Generate with minimal parameters
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
)
|
167 |
|
168 |
return outputs[0].cpu().numpy()
|
169 |
except Exception as e2:
|
170 |
logger.error(f"Second attempt failed: {e2}")
|
171 |
raise e2
|
172 |
|
173 |
-
def
|
174 |
-
"""Apply
|
175 |
# Get the length of the segments
|
176 |
length1 = segment1.shape[1]
|
177 |
length2 = segment2.shape[1]
|
@@ -189,12 +187,11 @@ class EndpointHandler:
|
|
189 |
# Copy the non-overlapping part of segment2
|
190 |
result[:, length1:] = segment2[:, overlap_samples:]
|
191 |
|
192 |
-
# Apply
|
193 |
if overlap_samples > 0:
|
194 |
-
#
|
195 |
-
|
196 |
-
|
197 |
-
fade_in = np.sin(t)**2
|
198 |
|
199 |
# Get the overlapping parts
|
200 |
segment1_end = segment1[:, -overlap_samples:].copy()
|
@@ -213,104 +210,80 @@ class EndpointHandler:
|
|
213 |
|
214 |
return result
|
215 |
|
216 |
-
def
|
217 |
-
"""
|
218 |
-
#
|
219 |
-
|
220 |
-
|
221 |
-
"folk", "blues", "metal", "ambient", "orchestral", "indie", "r&b", "soul",
|
222 |
-
"techno", "house", "drum and bass", "dubstep", "trance", "lo-fi", "lofi", "cinematic",
|
223 |
-
"soundtrack", "instrumental", "acoustic", "electric", "synth", "piano",
|
224 |
-
"guitar", "bass", "drums", "violin", "cello", "trumpet", "saxophone"
|
225 |
-
]
|
226 |
-
|
227 |
-
# Extract any style keywords from the prompt
|
228 |
-
prompt_lower = prompt.lower()
|
229 |
-
found_keywords = []
|
230 |
-
|
231 |
-
for keyword in style_keywords:
|
232 |
-
if keyword in prompt_lower:
|
233 |
-
found_keywords.append(keyword)
|
234 |
|
235 |
-
#
|
236 |
-
|
237 |
-
return ", ".join(found_keywords)
|
238 |
-
else:
|
239 |
-
return "musical"
|
240 |
-
|
241 |
-
def _generate_long_audio_sliding_window(self, prompt, total_duration, params):
|
242 |
-
"""
|
243 |
-
Generate long audio using Meta's sliding window approach:
|
244 |
-
- Generate 30-second chunks
|
245 |
-
- Slide window by 10 seconds
|
246 |
-
- Crossfade overlapping sections to maintain continuity
|
247 |
-
"""
|
248 |
-
# Initialize variables
|
249 |
-
segment_duration = self.max_segment_duration # 30 seconds per segment
|
250 |
-
slide_window = 10 # Slide by 10 seconds for each new segment
|
251 |
-
overlap_duration = segment_duration - slide_window # 20 seconds of overlap
|
252 |
|
253 |
-
#
|
254 |
-
|
255 |
-
|
256 |
-
# Initialize audio array
|
257 |
-
final_audio = None
|
258 |
|
259 |
-
#
|
260 |
-
|
261 |
-
"do_sample": True,
|
262 |
-
"guidance_scale": 3.0
|
263 |
-
}
|
264 |
|
265 |
-
#
|
266 |
-
|
267 |
-
generation_kwargs["top_k"] = min(int(params["top_k"]), 500)
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
276 |
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
282 |
-
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
-
#
|
286 |
-
|
|
|
287 |
|
288 |
-
|
|
|
289 |
# Calculate segment duration
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
else:
|
294 |
-
# Calculate remaining duration (accounting for overlap)
|
295 |
-
remaining_duration = total_duration - (i * slide_window)
|
296 |
-
if remaining_duration <= 0:
|
297 |
-
break
|
298 |
-
|
299 |
-
# Last segment might be shorter
|
300 |
-
current_segment_duration = min(segment_duration, remaining_duration + overlap_duration)
|
301 |
|
302 |
try:
|
303 |
-
#
|
304 |
-
if
|
|
|
305 |
segment_prompt = prompt
|
306 |
else:
|
307 |
-
#
|
308 |
-
segment_prompt = f"{prompt} [
|
309 |
-
|
310 |
-
logger.info(f"Generating segment {i+1}/{num_segments}, duration: {current_segment_duration:.1f}s")
|
311 |
-
logger.info(f"Segment prompt: {segment_prompt}")
|
312 |
|
313 |
-
# Process text
|
314 |
inputs = self.processor(
|
315 |
text=[segment_prompt],
|
316 |
padding=True,
|
@@ -318,82 +291,92 @@ class EndpointHandler:
|
|
318 |
).to("cuda")
|
319 |
|
320 |
# Calculate max_new_tokens from duration
|
321 |
-
max_new_tokens = int(
|
322 |
-
generation_kwargs["max_new_tokens"] = max_new_tokens
|
323 |
|
324 |
-
#
|
325 |
-
|
326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
|
328 |
-
|
329 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
|
331 |
-
#
|
332 |
-
if
|
333 |
-
final_audio =
|
334 |
else:
|
335 |
-
#
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
else:
|
344 |
-
# Calculate where to crossfade
|
345 |
-
current_length = final_audio.shape[1]
|
346 |
-
segment_offset = current_length - overlap_samples
|
347 |
-
|
348 |
-
# Create a new combined audio array with room for the new segment
|
349 |
-
new_length = segment_offset + segment_audio.shape[1]
|
350 |
-
combined_audio = np.zeros((final_audio.shape[0], new_length), dtype=final_audio.dtype)
|
351 |
-
|
352 |
-
# Copy the existing audio
|
353 |
-
combined_audio[:, :segment_offset] = final_audio[:, :segment_offset]
|
354 |
-
|
355 |
-
# Crossfade the overlapping region
|
356 |
-
crossfade_region = min(crossfade_samples, overlap_samples)
|
357 |
-
|
358 |
-
# Calculate crossfade weights (equal power)
|
359 |
-
t = np.linspace(0, np.pi/2, crossfade_region)
|
360 |
-
fade_out = np.cos(t)**2
|
361 |
-
fade_in = np.sin(t)**2
|
362 |
-
|
363 |
-
# Apply crossfade at the transition point
|
364 |
-
for ch in range(final_audio.shape[0]):
|
365 |
-
# Crossfade
|
366 |
-
combined_audio[ch, segment_offset:segment_offset+crossfade_region] = (
|
367 |
-
final_audio[ch, segment_offset:segment_offset+crossfade_region] * fade_out +
|
368 |
-
segment_audio[ch, :crossfade_region] * fade_in
|
369 |
-
)
|
370 |
-
|
371 |
-
# Copy the rest of the new segment (after crossfade)
|
372 |
-
combined_audio[ch, segment_offset+crossfade_region:] = segment_audio[ch, crossfade_region:]
|
373 |
-
|
374 |
-
final_audio = combined_audio
|
375 |
|
376 |
# Clear CUDA cache
|
377 |
torch.cuda.empty_cache()
|
378 |
|
|
|
|
|
|
|
|
|
379 |
except Exception as e:
|
380 |
-
logger.error(f"Error generating segment {
|
381 |
-
# If we have some output, return it
|
382 |
if final_audio is not None:
|
383 |
-
|
384 |
-
|
385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
|
387 |
-
# Apply a smooth fade
|
388 |
-
if final_audio.shape[1] > self.sampling_rate:
|
389 |
-
fade_samples =
|
390 |
-
fade_out = np.linspace(1.0, 0.0, fade_samples)**0.
|
391 |
for ch in range(final_audio.shape[0]):
|
392 |
final_audio[ch, -fade_samples:] *= fade_out
|
393 |
|
394 |
-
#
|
395 |
-
max_samples = int(total_duration * self.sampling_rate)
|
396 |
-
if final_audio.shape[1] > max_samples:
|
397 |
-
final_audio = final_audio[:, :max_samples]
|
398 |
-
|
399 |
return final_audio
|
|
|
75 |
logger.info(f"Requested duration: {duration} seconds")
|
76 |
|
77 |
# Generate audio
|
78 |
+
if duration <= self.max_segment_duration - 5: # For short durations, generate in one go
|
79 |
audio_output = self._generate_short_audio(prompt, duration, parameters)
|
80 |
else:
|
81 |
+
# Use basic segmentation for longer durations
|
82 |
+
audio_output = self._generate_long_audio(prompt, duration, parameters)
|
83 |
|
84 |
# Monitor GPU memory after generation
|
85 |
allocated = torch.cuda.memory_allocated() / 1e9
|
|
|
137 |
|
138 |
# Generate audio
|
139 |
logger.info(f"Generation parameters: {generation_kwargs}")
|
140 |
+
outputs = self.model.generate(**inputs, **generation_kwargs)
|
|
|
141 |
|
142 |
# Return audio
|
143 |
return outputs[0].cpu().numpy()
|
|
|
156 |
).to("cuda")
|
157 |
|
158 |
# Generate with minimal parameters
|
159 |
+
outputs = self.model.generate(
|
160 |
+
**inputs,
|
161 |
+
max_new_tokens=max_new_tokens,
|
162 |
+
do_sample=True,
|
163 |
+
guidance_scale=1.0 # Minimal guidance
|
164 |
+
)
|
|
|
165 |
|
166 |
return outputs[0].cpu().numpy()
|
167 |
except Exception as e2:
|
168 |
logger.error(f"Second attempt failed: {e2}")
|
169 |
raise e2
|
170 |
|
171 |
+
def _simple_crossfade(self, segment1, segment2, overlap_samples):
|
172 |
+
"""Apply a simple linear crossfade between segments."""
|
173 |
# Get the length of the segments
|
174 |
length1 = segment1.shape[1]
|
175 |
length2 = segment2.shape[1]
|
|
|
187 |
# Copy the non-overlapping part of segment2
|
188 |
result[:, length1:] = segment2[:, overlap_samples:]
|
189 |
|
190 |
+
# Apply simple linear crossfade to the overlapping parts
|
191 |
if overlap_samples > 0:
|
192 |
+
# Linear fade factors
|
193 |
+
fade_out = np.linspace(1, 0, overlap_samples)
|
194 |
+
fade_in = np.linspace(0, 1, overlap_samples)
|
|
|
195 |
|
196 |
# Get the overlapping parts
|
197 |
segment1_end = segment1[:, -overlap_samples:].copy()
|
|
|
210 |
|
211 |
return result
|
212 |
|
213 |
+
def _advanced_crossfade(self, segment1, segment2, overlap_samples):
|
214 |
+
"""Apply an advanced equal-power crossfade between segments."""
|
215 |
+
# Get the length of the segments
|
216 |
+
length1 = segment1.shape[1]
|
217 |
+
length2 = segment2.shape[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
+
# Ensure we have enough samples for crossfading
|
220 |
+
overlap_samples = min(overlap_samples, length1, length2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
+
# Create the result array (total length minus overlap)
|
223 |
+
result_length = length1 + length2 - overlap_samples
|
224 |
+
result = np.zeros((segment1.shape[0], result_length), dtype=segment1.dtype)
|
|
|
|
|
225 |
|
226 |
+
# Copy the non-overlapping part of segment1
|
227 |
+
result[:, :length1-overlap_samples] = segment1[:, :length1-overlap_samples]
|
|
|
|
|
|
|
228 |
|
229 |
+
# Copy the non-overlapping part of segment2
|
230 |
+
result[:, length1:] = segment2[:, overlap_samples:]
|
|
|
231 |
|
232 |
+
# Apply equal-power crossfade to the overlapping parts
|
233 |
+
if overlap_samples > 0:
|
234 |
+
# Equal power crossfade curves (cosine/sine based)
|
235 |
+
t = np.linspace(0, np.pi/2, overlap_samples)
|
236 |
+
fade_out = np.cos(t)**2
|
237 |
+
fade_in = np.sin(t)**2
|
238 |
+
|
239 |
+
# Get the overlapping parts
|
240 |
+
segment1_end = segment1[:, -overlap_samples:].copy()
|
241 |
+
segment2_start = segment2[:, :overlap_samples].copy()
|
242 |
|
243 |
+
# Apply the fades
|
244 |
+
for ch in range(segment1_end.shape[0]):
|
245 |
+
segment1_end[ch] *= fade_out
|
246 |
+
segment2_start[ch] *= fade_in
|
247 |
+
|
248 |
+
# Combine the faded parts
|
249 |
+
crossfaded = segment1_end + segment2_start
|
250 |
+
|
251 |
+
# Add to the result
|
252 |
+
result[:, length1-overlap_samples:length1] = crossfaded
|
253 |
|
254 |
+
return result
|
255 |
+
|
256 |
+
def _generate_long_audio(self, prompt, total_duration, params):
|
257 |
+
"""Generate long audio with improved segment continuity."""
|
258 |
+
# Overlap duration for crossfade
|
259 |
+
overlap_duration = 5 # Using a longer overlap for better transitions
|
260 |
+
|
261 |
+
# Initialize variables
|
262 |
+
remaining_duration = total_duration
|
263 |
+
final_audio = None
|
264 |
+
segment_idx = 0
|
265 |
|
266 |
+
# Calculate number of segments needed
|
267 |
+
segment_duration = self.max_segment_duration
|
268 |
+
overlap_samples = int(overlap_duration * self.sampling_rate)
|
269 |
|
270 |
+
# Process in segments
|
271 |
+
while remaining_duration > 0:
|
272 |
# Calculate segment duration
|
273 |
+
target_duration = min(segment_duration, remaining_duration + (segment_idx > 0) * overlap_duration)
|
274 |
+
|
275 |
+
logger.info(f"Generating segment {segment_idx+1}, duration: {target_duration:.1f}s")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
try:
|
278 |
+
# The main change: We directly use continuation prompts without trying prompt_audio
|
279 |
+
if segment_idx == 0:
|
280 |
+
# First segment with basic prompt
|
281 |
segment_prompt = prompt
|
282 |
else:
|
283 |
+
# Subsequent segments with enhanced continuation prompt
|
284 |
+
segment_prompt = f"{prompt} [continuing segment {segment_idx+1}, seamless continuation]"
|
|
|
|
|
|
|
285 |
|
286 |
+
# Process text for this segment
|
287 |
inputs = self.processor(
|
288 |
text=[segment_prompt],
|
289 |
padding=True,
|
|
|
291 |
).to("cuda")
|
292 |
|
293 |
# Calculate max_new_tokens from duration
|
294 |
+
max_new_tokens = int(target_duration * 50)
|
|
|
295 |
|
296 |
+
# Generation parameters for transformers implementation
|
297 |
+
generation_kwargs = {
|
298 |
+
"max_new_tokens": max_new_tokens,
|
299 |
+
"do_sample": True,
|
300 |
+
"guidance_scale": 3.0
|
301 |
+
}
|
302 |
+
|
303 |
+
# Add additional parameters if provided
|
304 |
+
if "top_k" in params:
|
305 |
+
generation_kwargs["top_k"] = min(int(params["top_k"]), 500)
|
306 |
+
|
307 |
+
if "temperature" in params:
|
308 |
+
temp = float(params["temperature"])
|
309 |
+
if temp > 0.1:
|
310 |
+
generation_kwargs["temperature"] = min(temp, 1.5)
|
311 |
|
312 |
+
if "guidance_scale" in params:
|
313 |
+
generation_kwargs["guidance_scale"] = min(float(params["guidance_scale"]), 3.0)
|
314 |
+
elif "cfg_coef" in params:
|
315 |
+
generation_kwargs["guidance_scale"] = min(float(params["cfg_coef"]), 3.0)
|
316 |
+
|
317 |
+
# Generate this segment
|
318 |
+
outputs = self.model.generate(**inputs, **generation_kwargs)
|
319 |
+
segment_output = outputs[0].cpu().numpy()
|
320 |
|
321 |
+
# Add this segment to our final output
|
322 |
+
if segment_idx == 0:
|
323 |
+
final_audio = segment_output
|
324 |
else:
|
325 |
+
# Apply advanced crossfade for better transitions
|
326 |
+
final_audio = self._advanced_crossfade(final_audio, segment_output, overlap_samples)
|
327 |
+
|
328 |
+
# Update remaining duration
|
329 |
+
if segment_idx == 0:
|
330 |
+
remaining_duration -= target_duration
|
331 |
+
else:
|
332 |
+
remaining_duration -= (target_duration - overlap_duration)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
# Clear CUDA cache
|
335 |
torch.cuda.empty_cache()
|
336 |
|
337 |
+
# Log progress
|
338 |
+
logger.info(f"GPU memory usage: {torch.cuda.memory_allocated() / 1e9:.2f} GB")
|
339 |
+
logger.info(f"Remaining duration: {remaining_duration:.1f}s")
|
340 |
+
|
341 |
except Exception as e:
|
342 |
+
logger.error(f"Error generating segment {segment_idx+1}: {e}")
|
|
|
343 |
if final_audio is not None:
|
344 |
+
logger.info("Returning partial audio after error")
|
345 |
+
return final_audio
|
346 |
+
|
347 |
+
# Try again with minimal parameters
|
348 |
+
try:
|
349 |
+
logger.info("Trying minimal generation parameters")
|
350 |
+
inputs = self.processor(
|
351 |
+
text=[prompt],
|
352 |
+
padding=True,
|
353 |
+
return_tensors="pt",
|
354 |
+
).to("cuda")
|
355 |
+
|
356 |
+
outputs = self.model.generate(
|
357 |
+
**inputs,
|
358 |
+
max_new_tokens=int(min(target_duration, 15.0) * 50),
|
359 |
+
do_sample=True
|
360 |
+
)
|
361 |
+
|
362 |
+
return outputs[0].cpu().numpy()
|
363 |
+
except Exception as e2:
|
364 |
+
logger.error(f"Minimal generation also failed: {e2}")
|
365 |
+
raise e2
|
366 |
+
|
367 |
+
# Move to next segment
|
368 |
+
segment_idx += 1
|
369 |
+
|
370 |
+
# Break if we've generated enough audio
|
371 |
+
if remaining_duration <= 0:
|
372 |
+
break
|
373 |
|
374 |
+
# Apply a smooth fade out to the last 0.5 seconds
|
375 |
+
if final_audio.shape[1] > self.sampling_rate // 2:
|
376 |
+
fade_samples = self.sampling_rate // 2 # 0.5 seconds
|
377 |
+
fade_out = np.linspace(1.0, 0.0, fade_samples)**0.7 # Smooth curve
|
378 |
for ch in range(final_audio.shape[0]):
|
379 |
final_audio[ch, -fade_samples:] *= fade_out
|
380 |
|
381 |
+
# Return the final audio
|
|
|
|
|
|
|
|
|
382 |
return final_audio
|