File size: 2,313 Bytes
6f745cc
 
 
aa5bd88
 
6f745cc
 
 
 
 
 
 
 
 
 
aa5bd88
6f745cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
tags:
- generated_from_trainer
datasets:
- HiTZ/alpaca_mt
model-index:
- name: alpaca-lora-65b-en-pt-es-ca
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# alpaca-lora-65b-en-pt-es-ca

This model is a fine-tuned version of [/gaueko1/hizkuntza-ereduak/LLaMA/lm/huggingface/65B](https://huggingface.co//gaueko1/hizkuntza-ereduak/LLaMA/lm/huggingface/65B) on the HiTZ/alpaca_mt ['en', 'pt', 'es', 'ca'] dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7271

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 63
- total_train_batch_size: 126
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8069        | 0.06  | 100  | 0.8033          |
| 0.8008        | 0.13  | 200  | 0.7826          |
| 0.7687        | 0.19  | 300  | 0.7721          |
| 0.7719        | 0.25  | 400  | 0.7647          |
| 0.7585        | 0.32  | 500  | 0.7588          |
| 0.7578        | 0.38  | 600  | 0.7537          |
| 0.7505        | 0.44  | 700  | 0.7491          |
| 0.7531        | 0.51  | 800  | 0.7449          |
| 0.7394        | 0.57  | 900  | 0.7416          |
| 0.7368        | 0.63  | 1000 | 0.7387          |
| 0.7412        | 0.69  | 1100 | 0.7361          |
| 0.7344        | 0.76  | 1200 | 0.7288          |
| 0.7383        | 0.82  | 1300 | 0.7281          |
| 0.7378        | 0.88  | 1400 | 0.7274          |
| 0.7204        | 0.95  | 1500 | 0.7271          |


### Framework versions

- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2