File size: 2,313 Bytes
6f745cc aa5bd88 6f745cc aa5bd88 6f745cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
tags:
- generated_from_trainer
datasets:
- HiTZ/alpaca_mt
model-index:
- name: alpaca-lora-65b-en-pt-es-ca
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# alpaca-lora-65b-en-pt-es-ca
This model is a fine-tuned version of [/gaueko1/hizkuntza-ereduak/LLaMA/lm/huggingface/65B](https://huggingface.co//gaueko1/hizkuntza-ereduak/LLaMA/lm/huggingface/65B) on the HiTZ/alpaca_mt ['en', 'pt', 'es', 'ca'] dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7271
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 63
- total_train_batch_size: 126
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8069 | 0.06 | 100 | 0.8033 |
| 0.8008 | 0.13 | 200 | 0.7826 |
| 0.7687 | 0.19 | 300 | 0.7721 |
| 0.7719 | 0.25 | 400 | 0.7647 |
| 0.7585 | 0.32 | 500 | 0.7588 |
| 0.7578 | 0.38 | 600 | 0.7537 |
| 0.7505 | 0.44 | 700 | 0.7491 |
| 0.7531 | 0.51 | 800 | 0.7449 |
| 0.7394 | 0.57 | 900 | 0.7416 |
| 0.7368 | 0.63 | 1000 | 0.7387 |
| 0.7412 | 0.69 | 1100 | 0.7361 |
| 0.7344 | 0.76 | 1200 | 0.7288 |
| 0.7383 | 0.82 | 1300 | 0.7281 |
| 0.7378 | 0.88 | 1400 | 0.7274 |
| 0.7204 | 0.95 | 1500 | 0.7271 |
### Framework versions
- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2
|