Update README.md
Browse files
README.md
CHANGED
@@ -76,7 +76,7 @@ The model's performance and biases are influenced by its base model (`google/gem
|
|
76 |
## How to Get Started with the Model
|
77 |
|
78 |
This model can be loaded using the Hugging Face `transformers` library.
|
79 |
-
|
80 |
# Example (conceptual, actual usage depends on task setup)
|
81 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
82 |
|
@@ -89,7 +89,7 @@ model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
89 |
# inputs = tokenizer(prompt, return_tensors="pt")
|
90 |
# outputs = model.generate(**inputs) # Adjust generation parameters as needed
|
91 |
# judgment = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
92 |
-
|
93 |
Refer to the project repository (`https://github.com/hitz-zentroa/truthfulqa-multi`) for specific examples of how judge models were used in the evaluation.
|
94 |
|
95 |
## Training Details
|
@@ -166,7 +166,7 @@ The model is based on the `Gemma2` architecture (`Gemma2ForCausalLM`). It is a C
|
|
166 |
## Citation
|
167 |
|
168 |
**Paper:**
|
169 |
-
|
170 |
@inproceedings{calvo-etal-2025-truthknowsnolanguage,
|
171 |
title = "Truth Knows No Language: Evaluating Truthfulness Beyond English",
|
172 |
author = "Calvo Figueras, Blanca and Sagarzazu, Eneko and Etxaniz, Julen and Barnes, Jeremy and Gamallo, Pablo and De Dios Flores, Iria and Agerri, Rodrigo",
|
@@ -176,7 +176,7 @@ The model is based on the `Gemma2` architecture (`Gemma2ForCausalLM`). It is a C
|
|
176 |
primaryClass={cs.CL},
|
177 |
url={https://arxiv.org/abs/2502.09387}
|
178 |
}
|
179 |
-
|
180 |
|
181 |
## More Information
|
182 |
|
|
|
76 |
## How to Get Started with the Model
|
77 |
|
78 |
This model can be loaded using the Hugging Face `transformers` library.
|
79 |
+
```python
|
80 |
# Example (conceptual, actual usage depends on task setup)
|
81 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
82 |
|
|
|
89 |
# inputs = tokenizer(prompt, return_tensors="pt")
|
90 |
# outputs = model.generate(**inputs) # Adjust generation parameters as needed
|
91 |
# judgment = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
92 |
+
```
|
93 |
Refer to the project repository (`https://github.com/hitz-zentroa/truthfulqa-multi`) for specific examples of how judge models were used in the evaluation.
|
94 |
|
95 |
## Training Details
|
|
|
166 |
## Citation
|
167 |
|
168 |
**Paper:**
|
169 |
+
```bibtex
|
170 |
@inproceedings{calvo-etal-2025-truthknowsnolanguage,
|
171 |
title = "Truth Knows No Language: Evaluating Truthfulness Beyond English",
|
172 |
author = "Calvo Figueras, Blanca and Sagarzazu, Eneko and Etxaniz, Julen and Barnes, Jeremy and Gamallo, Pablo and De Dios Flores, Iria and Agerri, Rodrigo",
|
|
|
176 |
primaryClass={cs.CL},
|
177 |
url={https://arxiv.org/abs/2502.09387}
|
178 |
}
|
179 |
+
```
|
180 |
|
181 |
## More Information
|
182 |
|