HideOnBush commited on
Commit
da4f541
·
1 Parent(s): cd8c7c5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -12
README.md CHANGED
@@ -2,6 +2,11 @@
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
 
 
 
 
 
5
  model-index:
6
  - name: BERTModified-finetuned-wikitext-test
7
  results: []
@@ -14,7 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 5.8018
 
 
 
 
18
 
19
  ## Model description
20
 
@@ -33,23 +42,68 @@ More information needed
33
  ### Training hyperparameters
34
 
35
  The following hyperparameters were used during training:
36
- - learning_rate: 2e-05
37
- - train_batch_size: 16
38
- - eval_batch_size: 16
39
  - seed: 42
40
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
41
  - lr_scheduler_type: linear
42
- - num_epochs: 5
43
 
44
  ### Training results
45
 
46
- | Training Loss | Epoch | Step | Validation Loss |
47
- |:-------------:|:-----:|:----:|:---------------:|
48
- | 6.8778 | 1.0 | 1096 | 6.3188 |
49
- | 5.9673 | 2.0 | 2192 | 6.0563 |
50
- | 5.6729 | 3.0 | 3288 | 5.9121 |
51
- | 5.5048 | 4.0 | 4384 | 5.8427 |
52
- | 5.4082 | 5.0 | 5480 | 5.8018 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
 
55
  ### Framework versions
 
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
  model-index:
11
  - name: BERTModified-finetuned-wikitext-test
12
  results: []
 
19
 
20
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 18.8994
23
+ - Precision: 0.25
24
+ - Recall: 0.25
25
+ - F1: 0.25
26
+ - Accuracy: 0.25
27
 
28
  ## Model description
29
 
 
42
  ### Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 4
47
+ - eval_batch_size: 4
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
+ - num_epochs: 50
52
 
53
  ### Training results
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 19.9877 | 1.0 | 250 | 19.8070 | 0.0385 | 0.0385 | 0.0385 | 0.0385 |
58
+ | 15.4776 | 2.0 | 500 | 20.2930 | 0.0577 | 0.0577 | 0.0577 | 0.0577 |
59
+ | 13.1238 | 3.0 | 750 | 20.1112 | 0.0769 | 0.0769 | 0.0769 | 0.0769 |
60
+ | 11.1387 | 4.0 | 1000 | 19.9105 | 0.0897 | 0.0897 | 0.0897 | 0.0897 |
61
+ | 9.5317 | 5.0 | 1250 | 19.9108 | 0.1282 | 0.1282 | 0.1282 | 0.1282 |
62
+ | 8.037 | 6.0 | 1500 | 19.6093 | 0.1410 | 0.1410 | 0.1410 | 0.1410 |
63
+ | 6.7498 | 7.0 | 1750 | 19.1636 | 0.1474 | 0.1474 | 0.1474 | 0.1474 |
64
+ | 5.6472 | 8.0 | 2000 | 19.6709 | 0.1538 | 0.1538 | 0.1538 | 0.1538 |
65
+ | 4.6665 | 9.0 | 2250 | 19.2537 | 0.1667 | 0.1667 | 0.1667 | 0.1667 |
66
+ | 3.9107 | 10.0 | 2500 | 19.1982 | 0.1474 | 0.1474 | 0.1474 | 0.1474 |
67
+ | 3.1874 | 11.0 | 2750 | 18.9938 | 0.1731 | 0.1731 | 0.1731 | 0.1731 |
68
+ | 2.5846 | 12.0 | 3000 | 18.7462 | 0.2115 | 0.2115 | 0.2115 | 0.2115 |
69
+ | 2.1464 | 13.0 | 3250 | 19.0017 | 0.1667 | 0.1667 | 0.1667 | 0.1667 |
70
+ | 1.7521 | 14.0 | 3500 | 18.4513 | 0.1859 | 0.1859 | 0.1859 | 0.1859 |
71
+ | 1.4561 | 15.0 | 3750 | 18.7532 | 0.2051 | 0.2051 | 0.2051 | 0.2051 |
72
+ | 1.2254 | 16.0 | 4000 | 18.3970 | 0.2179 | 0.2179 | 0.2179 | 0.2179 |
73
+ | 1.0416 | 17.0 | 4250 | 18.9764 | 0.1859 | 0.1859 | 0.1859 | 0.1859 |
74
+ | 0.8923 | 18.0 | 4500 | 18.3271 | 0.2244 | 0.2244 | 0.2244 | 0.2244 |
75
+ | 0.7803 | 19.0 | 4750 | 18.5893 | 0.2436 | 0.2436 | 0.2436 | 0.2436 |
76
+ | 0.6839 | 20.0 | 5000 | 18.3505 | 0.2051 | 0.2051 | 0.2051 | 0.2051 |
77
+ | 0.6175 | 21.0 | 5250 | 18.6798 | 0.2051 | 0.2051 | 0.2051 | 0.2051 |
78
+ | 0.5491 | 22.0 | 5500 | 18.7426 | 0.2115 | 0.2115 | 0.2115 | 0.2115 |
79
+ | 0.4952 | 23.0 | 5750 | 18.3955 | 0.2179 | 0.2179 | 0.2179 | 0.2179 |
80
+ | 0.4441 | 24.0 | 6000 | 18.5502 | 0.2564 | 0.2564 | 0.2564 | 0.2564 |
81
+ | 0.4047 | 25.0 | 6250 | 18.9599 | 0.2244 | 0.2244 | 0.2244 | 0.2244 |
82
+ | 0.3768 | 26.0 | 6500 | 18.8141 | 0.2308 | 0.2308 | 0.2308 | 0.2308 |
83
+ | 0.3435 | 27.0 | 6750 | 18.9732 | 0.2436 | 0.2436 | 0.2436 | 0.2436 |
84
+ | 0.3164 | 28.0 | 7000 | 18.9216 | 0.2372 | 0.2372 | 0.2372 | 0.2372 |
85
+ | 0.2954 | 29.0 | 7250 | 18.6152 | 0.1987 | 0.1987 | 0.1987 | 0.1987 |
86
+ | 0.2736 | 30.0 | 7500 | 18.6001 | 0.25 | 0.25 | 0.25 | 0.25 |
87
+ | 0.2491 | 31.0 | 7750 | 19.1374 | 0.2436 | 0.2436 | 0.2436 | 0.2436 |
88
+ | 0.2359 | 32.0 | 8000 | 18.8624 | 0.25 | 0.25 | 0.25 | 0.25 |
89
+ | 0.2222 | 33.0 | 8250 | 18.3201 | 0.2308 | 0.2308 | 0.2308 | 0.2308 |
90
+ | 0.212 | 34.0 | 8500 | 18.7708 | 0.2179 | 0.2179 | 0.2179 | 0.2179 |
91
+ | 0.1864 | 35.0 | 8750 | 18.8994 | 0.2372 | 0.2372 | 0.2372 | 0.2372 |
92
+ | 0.1771 | 36.0 | 9000 | 18.3130 | 0.2308 | 0.2308 | 0.2308 | 0.2308 |
93
+ | 0.1703 | 37.0 | 9250 | 18.6183 | 0.2436 | 0.2436 | 0.2436 | 0.2436 |
94
+ | 0.1554 | 38.0 | 9500 | 18.8593 | 0.2372 | 0.2372 | 0.2372 | 0.2372 |
95
+ | 0.1469 | 39.0 | 9750 | 18.8936 | 0.2628 | 0.2628 | 0.2628 | 0.2628 |
96
+ | 0.1407 | 40.0 | 10000 | 18.9002 | 0.2372 | 0.2372 | 0.2372 | 0.2372 |
97
+ | 0.1328 | 41.0 | 10250 | 19.1827 | 0.2564 | 0.2564 | 0.2564 | 0.2564 |
98
+ | 0.1297 | 42.0 | 10500 | 18.5465 | 0.25 | 0.25 | 0.25 | 0.25 |
99
+ | 0.1226 | 43.0 | 10750 | 18.9125 | 0.2308 | 0.2308 | 0.2308 | 0.2308 |
100
+ | 0.1218 | 44.0 | 11000 | 19.0831 | 0.2308 | 0.2308 | 0.2308 | 0.2308 |
101
+ | 0.1136 | 45.0 | 11250 | 18.7969 | 0.2372 | 0.2372 | 0.2372 | 0.2372 |
102
+ | 0.1075 | 46.0 | 11500 | 18.7629 | 0.25 | 0.25 | 0.25 | 0.25 |
103
+ | 0.1044 | 47.0 | 11750 | 18.9700 | 0.2115 | 0.2115 | 0.2115 | 0.2115 |
104
+ | 0.1042 | 48.0 | 12000 | 18.7211 | 0.2628 | 0.2628 | 0.2628 | 0.2628 |
105
+ | 0.1008 | 49.0 | 12250 | 18.9104 | 0.2244 | 0.2244 | 0.2244 | 0.2244 |
106
+ | 0.1014 | 50.0 | 12500 | 18.7892 | 0.25 | 0.25 | 0.25 | 0.25 |
107
 
108
 
109
  ### Framework versions