Commit
·
da4f541
1
Parent(s):
cd8c7c5
update model card README.md
Browse files
README.md
CHANGED
@@ -2,6 +2,11 @@
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
|
|
|
|
|
|
|
|
|
|
5 |
model-index:
|
6 |
- name: BERTModified-finetuned-wikitext-test
|
7 |
results: []
|
@@ -14,7 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss:
|
|
|
|
|
|
|
|
|
18 |
|
19 |
## Model description
|
20 |
|
@@ -33,23 +42,68 @@ More information needed
|
|
33 |
### Training hyperparameters
|
34 |
|
35 |
The following hyperparameters were used during training:
|
36 |
-
- learning_rate:
|
37 |
-
- train_batch_size:
|
38 |
-
- eval_batch_size:
|
39 |
- seed: 42
|
40 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
- lr_scheduler_type: linear
|
42 |
-
- num_epochs:
|
43 |
|
44 |
### Training results
|
45 |
|
46 |
-
| Training Loss | Epoch | Step
|
47 |
-
|
48 |
-
|
|
49 |
-
|
|
50 |
-
|
|
51 |
-
|
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
|
55 |
### Framework versions
|
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
model-index:
|
11 |
- name: BERTModified-finetuned-wikitext-test
|
12 |
results: []
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 18.8994
|
23 |
+
- Precision: 0.25
|
24 |
+
- Recall: 0.25
|
25 |
+
- F1: 0.25
|
26 |
+
- Accuracy: 0.25
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
42 |
### Training hyperparameters
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-05
|
46 |
+
- train_batch_size: 4
|
47 |
+
- eval_batch_size: 4
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 50
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 19.9877 | 1.0 | 250 | 19.8070 | 0.0385 | 0.0385 | 0.0385 | 0.0385 |
|
58 |
+
| 15.4776 | 2.0 | 500 | 20.2930 | 0.0577 | 0.0577 | 0.0577 | 0.0577 |
|
59 |
+
| 13.1238 | 3.0 | 750 | 20.1112 | 0.0769 | 0.0769 | 0.0769 | 0.0769 |
|
60 |
+
| 11.1387 | 4.0 | 1000 | 19.9105 | 0.0897 | 0.0897 | 0.0897 | 0.0897 |
|
61 |
+
| 9.5317 | 5.0 | 1250 | 19.9108 | 0.1282 | 0.1282 | 0.1282 | 0.1282 |
|
62 |
+
| 8.037 | 6.0 | 1500 | 19.6093 | 0.1410 | 0.1410 | 0.1410 | 0.1410 |
|
63 |
+
| 6.7498 | 7.0 | 1750 | 19.1636 | 0.1474 | 0.1474 | 0.1474 | 0.1474 |
|
64 |
+
| 5.6472 | 8.0 | 2000 | 19.6709 | 0.1538 | 0.1538 | 0.1538 | 0.1538 |
|
65 |
+
| 4.6665 | 9.0 | 2250 | 19.2537 | 0.1667 | 0.1667 | 0.1667 | 0.1667 |
|
66 |
+
| 3.9107 | 10.0 | 2500 | 19.1982 | 0.1474 | 0.1474 | 0.1474 | 0.1474 |
|
67 |
+
| 3.1874 | 11.0 | 2750 | 18.9938 | 0.1731 | 0.1731 | 0.1731 | 0.1731 |
|
68 |
+
| 2.5846 | 12.0 | 3000 | 18.7462 | 0.2115 | 0.2115 | 0.2115 | 0.2115 |
|
69 |
+
| 2.1464 | 13.0 | 3250 | 19.0017 | 0.1667 | 0.1667 | 0.1667 | 0.1667 |
|
70 |
+
| 1.7521 | 14.0 | 3500 | 18.4513 | 0.1859 | 0.1859 | 0.1859 | 0.1859 |
|
71 |
+
| 1.4561 | 15.0 | 3750 | 18.7532 | 0.2051 | 0.2051 | 0.2051 | 0.2051 |
|
72 |
+
| 1.2254 | 16.0 | 4000 | 18.3970 | 0.2179 | 0.2179 | 0.2179 | 0.2179 |
|
73 |
+
| 1.0416 | 17.0 | 4250 | 18.9764 | 0.1859 | 0.1859 | 0.1859 | 0.1859 |
|
74 |
+
| 0.8923 | 18.0 | 4500 | 18.3271 | 0.2244 | 0.2244 | 0.2244 | 0.2244 |
|
75 |
+
| 0.7803 | 19.0 | 4750 | 18.5893 | 0.2436 | 0.2436 | 0.2436 | 0.2436 |
|
76 |
+
| 0.6839 | 20.0 | 5000 | 18.3505 | 0.2051 | 0.2051 | 0.2051 | 0.2051 |
|
77 |
+
| 0.6175 | 21.0 | 5250 | 18.6798 | 0.2051 | 0.2051 | 0.2051 | 0.2051 |
|
78 |
+
| 0.5491 | 22.0 | 5500 | 18.7426 | 0.2115 | 0.2115 | 0.2115 | 0.2115 |
|
79 |
+
| 0.4952 | 23.0 | 5750 | 18.3955 | 0.2179 | 0.2179 | 0.2179 | 0.2179 |
|
80 |
+
| 0.4441 | 24.0 | 6000 | 18.5502 | 0.2564 | 0.2564 | 0.2564 | 0.2564 |
|
81 |
+
| 0.4047 | 25.0 | 6250 | 18.9599 | 0.2244 | 0.2244 | 0.2244 | 0.2244 |
|
82 |
+
| 0.3768 | 26.0 | 6500 | 18.8141 | 0.2308 | 0.2308 | 0.2308 | 0.2308 |
|
83 |
+
| 0.3435 | 27.0 | 6750 | 18.9732 | 0.2436 | 0.2436 | 0.2436 | 0.2436 |
|
84 |
+
| 0.3164 | 28.0 | 7000 | 18.9216 | 0.2372 | 0.2372 | 0.2372 | 0.2372 |
|
85 |
+
| 0.2954 | 29.0 | 7250 | 18.6152 | 0.1987 | 0.1987 | 0.1987 | 0.1987 |
|
86 |
+
| 0.2736 | 30.0 | 7500 | 18.6001 | 0.25 | 0.25 | 0.25 | 0.25 |
|
87 |
+
| 0.2491 | 31.0 | 7750 | 19.1374 | 0.2436 | 0.2436 | 0.2436 | 0.2436 |
|
88 |
+
| 0.2359 | 32.0 | 8000 | 18.8624 | 0.25 | 0.25 | 0.25 | 0.25 |
|
89 |
+
| 0.2222 | 33.0 | 8250 | 18.3201 | 0.2308 | 0.2308 | 0.2308 | 0.2308 |
|
90 |
+
| 0.212 | 34.0 | 8500 | 18.7708 | 0.2179 | 0.2179 | 0.2179 | 0.2179 |
|
91 |
+
| 0.1864 | 35.0 | 8750 | 18.8994 | 0.2372 | 0.2372 | 0.2372 | 0.2372 |
|
92 |
+
| 0.1771 | 36.0 | 9000 | 18.3130 | 0.2308 | 0.2308 | 0.2308 | 0.2308 |
|
93 |
+
| 0.1703 | 37.0 | 9250 | 18.6183 | 0.2436 | 0.2436 | 0.2436 | 0.2436 |
|
94 |
+
| 0.1554 | 38.0 | 9500 | 18.8593 | 0.2372 | 0.2372 | 0.2372 | 0.2372 |
|
95 |
+
| 0.1469 | 39.0 | 9750 | 18.8936 | 0.2628 | 0.2628 | 0.2628 | 0.2628 |
|
96 |
+
| 0.1407 | 40.0 | 10000 | 18.9002 | 0.2372 | 0.2372 | 0.2372 | 0.2372 |
|
97 |
+
| 0.1328 | 41.0 | 10250 | 19.1827 | 0.2564 | 0.2564 | 0.2564 | 0.2564 |
|
98 |
+
| 0.1297 | 42.0 | 10500 | 18.5465 | 0.25 | 0.25 | 0.25 | 0.25 |
|
99 |
+
| 0.1226 | 43.0 | 10750 | 18.9125 | 0.2308 | 0.2308 | 0.2308 | 0.2308 |
|
100 |
+
| 0.1218 | 44.0 | 11000 | 19.0831 | 0.2308 | 0.2308 | 0.2308 | 0.2308 |
|
101 |
+
| 0.1136 | 45.0 | 11250 | 18.7969 | 0.2372 | 0.2372 | 0.2372 | 0.2372 |
|
102 |
+
| 0.1075 | 46.0 | 11500 | 18.7629 | 0.25 | 0.25 | 0.25 | 0.25 |
|
103 |
+
| 0.1044 | 47.0 | 11750 | 18.9700 | 0.2115 | 0.2115 | 0.2115 | 0.2115 |
|
104 |
+
| 0.1042 | 48.0 | 12000 | 18.7211 | 0.2628 | 0.2628 | 0.2628 | 0.2628 |
|
105 |
+
| 0.1008 | 49.0 | 12250 | 18.9104 | 0.2244 | 0.2244 | 0.2244 | 0.2244 |
|
106 |
+
| 0.1014 | 50.0 | 12500 | 18.7892 | 0.25 | 0.25 | 0.25 | 0.25 |
|
107 |
|
108 |
|
109 |
### Framework versions
|