--- base_model: - mistralai/Mistral-7B-v0.1 tags: - mlx --- # Mistral7B-v0.1-4bit-mlx-LoRA-WikiSQL A 4-bit LoRA-fine-tuned Mistral-7B model for WikiSQL tasks, via Apple’s MLX framework and the `lora.py`. This model was converted to MLX format from [`Hinova/mistral-7B-v0.1-4bit-mlx`](). Refer to the [original model card](https://huggingface.co/Hinova/mistral-7B-v0.1-4bit-mlx) for more details on the model. --- ## 🚀 Overview This model was trained using the MLX Examples LoRA tutorial: - Fine-tuning based on `lora.py` (ml-explore/mlx-examples/lora) - Adapted Mistral-7B on the WikiSQL dataset - Applied low-rank ΔW adapters with LoRA, freezing base weights - Quantized to 4-bit for Apple Silicon efficiency - Packaged in MLX format for seamless inference via `mlx-lm` --- ## 📦 Model Files | File | Description | |-------------------|----------------------------------------------------| | `weights.npz` | Fused weights: base + LoRA adapters | | `config.json` | Model config with quantization metadata | | `tokenizer.model` | SentencePiece tokenizer for Mistral-7B | --- ## 💡 How to Use ### Install ```bash pip install mlx-lm ## Use with mlx ```bash pip install mlx git clone https://github.com/ml-explore/mlx-examples.git cd mlx-examples/llms/hf_llm python generate.py --model Hinova/mistral7b-v0.1-4bit-mlx-lora-wikisql --prompt "My name is" ```