ppo-LunarLander-v2 / config.json
HugeFighter's picture
LunarLander-v2 agent trained using PPO algorithm
68e9220 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78b11ab6d090>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78b11ab6d120>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78b11ab6d1b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78b11ab6d240>", "_build": "<function ActorCriticPolicy._build at 0x78b11ab6d2d0>", "forward": "<function ActorCriticPolicy.forward at 0x78b11ab6d360>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78b11ab6d3f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78b11ab6d480>", "_predict": "<function ActorCriticPolicy._predict at 0x78b11ab6d510>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78b11ab6d5a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78b11ab6d630>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78b11ab6d6c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78b11acf7bc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1735723374199690954, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO1wAj7Sxe67bBo8vjS0dLyowQg+5msGvgAAgD8AAIA/gGLdPSuGqz5KVki9gZhsvpEEhLVIJ7C8AAAAAAAAAAAG4Cg+yZ2mPiG2R74tqmW+DqjGvEgmd70AAAAAAAAAAJr5Q7qDhbI/cfc0vdQ0v76jbT47yxBOPQAAAAAAAAAAALb4vW9qeT+arq69D42hvjA/+L3MkzY9AAAAAAAAAABzHr09gRn8PdJBWL4unhO+D4DdvHWlYrsAAAAAAAAAADNctzxxEAU+YwEqvYmsPb4hDBw97h1wvAAAAAAAAAAAmuckvOyt6Dpajxg9tuccviMpdruY+vi8AAAAAAAAAABaveA9LzmzP/6OCj/Dkoe+Z12EPL2qIj4AAAAAAAAAALPDOj3XowW3+Vg+vusTEL7llgy9cIdrPgAAgD8AAAAAMyRNPZoJpj/+JAU/wl8dvxeY0bkGqeg9AAAAAAAAAADmOpm9aMUPP244gj1cL5u+GSDNO2XRsDwAAAAAAAAAADMTHjtcw88+SojLPZWLUr4fVfI8pTBuvQAAAAAAAAAAzRyKPOmLH7y1lWq8lSgnvOwOhT33CAw9AACAPwAAgD+aYxO9S2zjPbZHEj7UDl6+cTTZPWuHHT0AAAAAAAAAAJrjz7wDY38/l0W4vcuv0r6fiTi9FpguPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFzNGiHqNaMAWyUTRwBjAF0lEdAkjBFS88La3V9lChoBkdARU7JSzgMt2gHS91oCEdAkjBDD4xk/nV9lChoBkdAb84KjzqbB2gHTSUBaAhHQJIwwJ0GNaR1fZQoaAZHQHB1NqYZ2p1oB005AWgIR0CSMj4zrNW3dX2UKGgGR0ByFW/mDDjzaAdL+GgIR0CSNRrmhdt3dX2UKGgGR0BxXjmLcbiqaAdNEQFoCEdAkjX145cTrXV9lChoBkdAcJmpKzzErGgHTRABaAhHQJI18JzDGcZ1fZQoaAZHQAbfo7muDBdoB00AAWgIR0CSNmpzcRDkdX2UKGgGR0Bx4JHZsbeeaAdNSQFoCEdAkjZ7Ysd1dXV9lChoBkdAbIh6sySFG2gHTTMBaAhHQJI3Nje9Ba91fZQoaAZHQHAxR99c8kloB01MAWgIR0CSN9q/dqL1dX2UKGgGR0BwG4zsQd0aaAdNGAFoCEdAkjhD6rNnoXV9lChoBkdAcSduxKQJX2gHTUgBaAhHQJI4fVUdaMd1fZQoaAZHQGIoKYzBRANoB03oA2gIR0CSOOPAfuCxdX2UKGgGR0BwZ1YlpoK2aAdNIAFoCEdAkjmKrBCUo3V9lChoBkdAcQesf7rLQ2gHTR4BaAhHQJI5qjM3ZPF1fZQoaAZHQHE1VR1oxpNoB00iAWgIR0CSOcUnXumadX2UKGgGR0ByShDa4+bFaAdNQwFoCEdAkjsZng5zYHV9lChoBkdAUSZyXD3ueGgHTegDaAhHQJI79Kg7HQ11fZQoaAZHQG/TSZrpJPJoB01AAWgIR0CSPJBO58SgdX2UKGgGR0Bywq0WuX/paAdNHAFoCEdAkj4IPGyX2XV9lChoBkdAcy2mFJxvN2gHTQwBaAhHQJI+MQg9vCN1fZQoaAZHQEM+/qPfbbloB0vuaAhHQJI+Y5eZ5Rl1fZQoaAZHQHCD4qPOpsJoB00VAWgIR0CSPpD63y7PdX2UKGgGR0BwrYxsVLzxaAdNDgFoCEdAkj7CADq4Y3V9lChoBkdAcJKmGdqcmWgHTSEBaAhHQJI/Ox2St/51fZQoaAZHQHIltR3u/lBoB0vsaAhHQJI/akpI+W51fZQoaAZHQFN6SBbwBo5oB0vmaAhHQJJAW8OCoTB1fZQoaAZHQHK+JbyH2ytoB00YAWgIR0CSQG0+C9RKdX2UKGgGR0BxI+po9LYgaAdNNwFoCEdAkkDxtHhCMXV9lChoBkdAbtmKm8/Uv2gHTRwBaAhHQJJB1S5y2hJ1fZQoaAZHQHIiBnBciW5oB005AWgIR0CSQepbUwztdX2UKGgGR0Btwxs67ulXaAdNLgFoCEdAkkIsAzYVZnV9lChoBkdAcZCsWfseGWgHTREBaAhHQJJC2RoysS11fZQoaAZHQHE3+EIw/PhoB00sAWgIR0CSRRHDaXa8dX2UKGgGR0BwZTSPU8V6aAdL+2gIR0CSRb9Hc1wYdX2UKGgGR0BwIkn6VMVUaAdNEwFoCEdAkkYmzjWCmXV9lChoBkdAcRMqxTsIFGgHS/VoCEdAkkZPcvduYXV9lChoBkdAcsnCmuTzNGgHTRwBaAhHQJJGR+rlvIh1fZQoaAZHQHKZWnjyWiVoB011AWgIR0CSRqxFiKBNdX2UKGgGR0BwfwetCAtnaAdNMwFoCEdAkkbNv863iXV9lChoBkdAb5jt/nW8RWgHTRgBaAhHQJJHGeFtbcJ1fZQoaAZHQHBdGBas6q9oB008AWgIR0CSR3MyJsO5dX2UKGgGR0BvsajL0SRKaAdNAAFoCEdAkkePOhTOxHV9lChoBkdAcUA4p+c6NmgHTSoBaAhHQJJdKu+yquN1fZQoaAZHQHC+cpkPMB9oB00OAWgIR0CSXbTJhfBvdX2UKGgGR0Bw9ipYLb5/aAdNKwFoCEdAkl23Ip6QeXV9lChoBkdAcK1qrBCUo2gHTTABaAhHQJJe/CemNzd1fZQoaAZHQHDeixNZeRhoB00yAWgIR0CSX+HEdeY2dX2UKGgGR0BOfu/k/8l5aAdL4GgIR0CSYF4k/r0KdX2UKGgGR0Bwo9HoX9BKaAdNaQFoCEdAkmBO/Ho5gnV9lChoBkdAcGvIxQBPsWgHTQUBaAhHQJJh9zZHuqp1fZQoaAZHQHAntb5dnkFoB006AWgIR0CSYncj7hvSdX2UKGgGR0BvqFrEcbR4aAdNIwFoCEdAkmNclTm4iHV9lChoBkdAcJb14gRsdmgHTToBaAhHQJJjhqcmShd1fZQoaAZHQHKssLKFIupoB001AWgIR0CSZA1TisGQdX2UKGgGR0Bwod00WM0haAdNGQFoCEdAkmQQ3xWkrXV9lChoBkdAcP4nnMdLhGgHTTABaAhHQJJklaq0dBB1fZQoaAZHQHAZxu4wyqNoB00TAWgIR0CSZS2IO6NEdX2UKGgGR0BwdQPOIInjaAdNVAFoCEdAkmVHx4IKMXV9lChoBkdAbQy38XN1Q2gHTYQBaAhHQJJlwpQUHpt1fZQoaAZHQG72uMMqjJxoB00kAWgIR0CSZihjOLR8dX2UKGgGR0Bt42AiFCb+aAdNAwFoCEdAkmaUEgW8AnV9lChoBkdAcr2DWsijcmgHTUUBaAhHQJJnEvzvqkd1fZQoaAZHQE+7F3IMjNZoB0vqaAhHQJJnJK+SKWN1fZQoaAZHQHF6nck+otNoB00IAWgIR0CSZ3phF3INdX2UKGgGR0BuFubkOqecaAdNHgFoCEdAkmh72g398HV9lChoBkdAcTlvqTr3TWgHS/ZoCEdAkmrvJA+pwXV9lChoBkdAcJbbvw3HaWgHTS8BaAhHQJJrIr/bTMJ1fZQoaAZHQHC+kCmuTzNoB01MAWgIR0CSa5ypaRp2dX2UKGgGR0BwAVoZhrnDaAdNAQFoCEdAkmvqOT7l73V9lChoBkdActRWWhRIjGgHTSsBaAhHQJJr85jpcHJ1fZQoaAZHQHMO+JYT0xxoB0vtaAhHQJJsBr433pR1fZQoaAZHQG+LnYYixFBoB00xAWgIR0CSbEVGCqZMdX2UKGgGR0BxtZ/y5I6KaAdNLAFoCEdAkmycscyWRnV9lChoBkdAcCa4sVclgWgHTQ0BaAhHQJJs0NG3F1l1fZQoaAZHQHAlLRrrPdFoB00cAWgIR0CSbkewLVnVdX2UKGgGR0BzSJg5R0lraAdNKQFoCEdAkm48DSw4bXV9lChoBkdAcqehysCDEmgHTRMBaAhHQJJu+Vkc0ch1fZQoaAZHQGzg9p7CzkZoB00OAWgIR0CSbu0PYnOTdX2UKGgGR0Bt92VPepGXaAdNNwFoCEdAkm9o0Mw1znV9lChoBkdAcidwQ176YWgHTRgBaAhHQJJvhjlPrOZ1fZQoaAZHQG0RW4NI9TxoB00YAWgIR0CScHXHBDXwdX2UKGgGR0BGxjLjghr4aAdL0GgIR0CScjFj/dZadX2UKGgGR0BwwjEk0JnhaAdNCgFoCEdAknJSOzY29HV9lChoBkdAUEKUA1ejVWgHS5toCEdAknMkAYHgP3V9lChoBkdAcZoV1fVqe2gHTQkBaAhHQJJzQXDWK/F1fZQoaAZHQG3mXdKujh1oB00bAWgIR0CSdACBPKuCdX2UKGgGR0ByMtO0svqUaAdNKwFoCEdAknQcWTHKfXV9lChoBkdAcHL2lVLi/GgHTSYBaAhHQJJ0R5VwPy11fZQoaAZHQG3e1IRRMvhoB00jAWgIR0CSdH+/xlQNdX2UKGgGR0Bwe6CK77KraAdNKgFoCEdAknU2Tkhib3V9lChoBkdAcqTeRPoFFGgHTXEBaAhHQJJ1pPXTVlR1fZQoaAZHQHIOu/tY0VJoB00QAWgIR0CSdeUMoc7ydX2UKGgGR0BwewmAskIHaAdNGgFoCEdAknYYxk/bCnV9lChoBkdAcbnJ5mh/RWgHTSoBaAhHQJJ3QZCOWB11fZQoaAZHQHHxTJ2dNFloB00mAWgIR0CSd8rZamoBdX2UKGgGR0BwzrZL7GedaAdNRwFoCEdAkniVw97ngnV9lChoBkdAcPBTFERao2gHS+ZoCEdAknjdIf8uSXV9lChoBkdAcM8vJRwZO2gHTSwBaAhHQJJ5F49ovi91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}