File size: 10,365 Bytes
42f73ad
 
 
 
 
 
1a65662
42f73ad
92c0c75
1a65662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92c0c75
 
1a65662
 
 
 
 
 
 
 
 
 
 
 
 
 
92c0c75
 
1a65662
 
 
 
 
 
 
 
 
 
 
 
 
 
92c0c75
 
1a65662
 
 
 
 
 
 
 
 
 
 
 
 
 
92c0c75
 
1a65662
 
 
 
 
 
 
 
 
 
 
92c0c75
1a65662
 
92c0c75
 
1a65662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92c0c75
 
1a65662
e60fcf7
 
42f73ad
a393e40
 
 
 
42f73ad
a393e40
 
 
 
 
 
 
 
6e9be55
a393e40
8312571
a393e40
 
 
 
 
 
 
 
 
 
42f73ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a393e40
42f73ad
a393e40
42f73ad
a393e40
42f73ad
a393e40
 
 
42f73ad
a393e40
 
42f73ad
a393e40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42f73ad
a393e40
 
 
 
 
42f73ad
0529d7e
 
 
 
 
 
 
 
 
 
 
a393e40
42f73ad
a393e40
 
 
 
 
 
 
 
 
 
 
42f73ad
 
a393e40
42f73ad
a393e40
42f73ad
a393e40
 
42f73ad
a393e40
42f73ad
a393e40
42f73ad
a393e40
1a65662
a393e40
1a65662
a393e40
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
---
license: llama3
tags:
- axolotl
- dpo
- trl
base_model: meta-llama/Meta-Llama-3-8B-Instruct
datasets:
- HumanLLMs/Human-Like-DPO-Dataset
model-index:
- name: Humanish-LLama3.1-8B-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 64.98
      name: strict accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-LLama3.1-8B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 28.01
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-LLama3.1-8B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 8.46
      name: exact match
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-LLama3.1-8B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 0.78
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-LLama3.1-8B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 2
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-LLama3.1-8B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 30.02
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-LLama3.1-8B-Instruct
      name: Open LLM Leaderboard
pipeline_tag: text-generation
library_name: transformers
---
<div align="center">
  <img src="https://cdn-avatars.huggingface.co/v1/production/uploads/63da3d7ae697e5898cb86854/H-vpXOX6KZu01HnV87Jk5.jpeg" width="320" height="320" />
  <h1>Enhancing Human-Like Responses in Large Language Models</h1>
</div>

<p align="center">
  &nbsp&nbsp | 🤗 <a href="https://huggingface.co/collections/HumanLLMs/human-like-humanish-llms-6759fa68f22e11eb1a10967e">Models</a>&nbsp&nbsp | 
  &nbsp&nbsp 📊 <a href="https://huggingface.co/datasets/HumanLLMs/Human-Like-DPO-Dataset">Dataset</a>&nbsp&nbsp | 
  &nbsp&nbsp 📄<a href="https://arxiv.org/abs/2501.05032">Paper</a>&nbsp&nbsp |
</p>

# 🚀 Human-Like-Llama3-8B-Instruct

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), specifically optimized to generate more human-like and conversational responses.

The fine-tuning process employed both [Low-Rank Adaptation (LoRA)](https://arxiv.org/abs/2106.09685) and [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290) to enhance natural language understanding, conversational coherence, and emotional intelligence in interactions.

The proccess of creating this models is detailed in the research paper [“Enhancing Human-Like Responses in Large Language Models”](https://arxiv.org/abs/2501.05032).

# 🛠️ Training Configuration

- **Base Model:** Llama3-8B-Instruct  
- **Framework:** Axolotl v0.4.1  
- **Hardware:** 2x NVIDIA A100 (80 GB) GPUs  
- **Training Time:** ~2 hours 20 minutes  
- **Dataset:** Synthetic dataset with ≈11,000 samples across 256 diverse topics  

<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: true
load_in_4bit: false
strict: false

chat_template: llama3
rl: dpo
datasets:
  - path: HumanLLMs/humanish-dpo-project
    type: llama3.prompt_pairs
    chat_template: llama3

dataset_prepared_path:
val_set_size: 0.05
output_dir: ./humanish-llama3-8b-instruct

sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 8
lora_alpha: 4
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: Humanish-DPO
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

hub_model_id: HumanLLMs/Humanish-LLama3.1-8B-Instruct

gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

warmup_steps: 10
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:

save_safetensors: true

```

</details><br>

# 💬 Prompt Template

You can use Llama3 prompt template while using the model:

### Llama3

```
<|start_header_id|>system<|end_header_id|>
{system}<|eot_id|>

<|start_header_id|>user<|end_header_id|>
{user}<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
{assistant}<|eot_id|>
```

This prompt template is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
`tokenizer.apply_chat_template()` method:

```python
messages = [
    {"role": "system", "content": "You are helpful AI asistant."},
    {"role": "user", "content": "Hello!"}
]
gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
model.generate(**gen_input)
```

# 🤖 Models

|         Model         |                               Download                                 |
|:---------------------:|:-----------------------------------------------------------------------:|
| Human-Like-Llama-3-8B-Instruct  |  🤗 [HuggingFace](https://huggingface.co/HumanLLMs/Human-Like-LLama3-8B-Instruct)  |
| Human-Like-Qwen-2.5-7B-Instruct  | 🤗 [HuggingFace](https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct)  |
| Human-Like-Mistral-Nemo-Instruct  | 🤗 [HuggingFace](https://huggingface.co/HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407) |

# 🔄 Quantizationed versions

## GGUF [@bartowski](https://huggingface.co/bartowski)

- https://huggingface.co/bartowski/Human-Like-LLama3-8B-Instruct-GGUF

- https://huggingface.co/bartowski/Human-Like-Qwen2.5-7B-Instruct-GGUF

- https://huggingface.co/bartowski/Human-Like-Mistral-Nemo-Instruct-2407-GGUF

  
# 🎯 Benchmark Results

| **Group**                      | **Model**                      | **Average** | **IFEval** | **BBH** | **MATH Lvl 5** | **GPQA** | **MuSR** | **MMLU-PRO** |
|--------------------------------|--------------------------------|-------------|------------|---------|----------------|----------|----------|--------------|
| **Llama Models**               | Human-Like-Llama-3-8B-Instruct | 22.37       | **64.97**  | 28.01   | 8.45           | 0.78     | **2.00** | 30.01        |
|                                | Llama-3-8B-Instruct            | 23.57       | 74.08      | 28.24   | 8.68           | 1.23     | 1.60     | 29.60        |
|                                | *Difference (Human-Like)*      | -1.20       | **-9.11**  | -0.23   | -0.23          | -0.45    | +0.40    | +0.41        |
| **Qwen Models**                | Human-Like-Qwen-2.5-7B-Instruct | 26.66      | 72.84      | 34.48   | 0.00           | 6.49     | 8.42     | 37.76        |
|                                | Qwen-2.5-7B-Instruct           | 26.86       | 75.85      | 34.89   | 0.00           | 5.48     | 8.45     | 36.52        |
|                                | *Difference (Human-Like)*      | -0.20       | -3.01      | -0.41   | 0.00           | **+1.01**| -0.03    | **+1.24**    |
| **Mistral Models**             | Human-Like-Mistral-Nemo-Instruct | 22.88     | **54.51**  | 32.70   | 7.62           | 5.03     | 9.39     | 28.00        |
|                                | Mistral-Nemo-Instruct          | 23.53       | 63.80      | 29.68   | 5.89           | 5.37     | 8.48     | 27.97        |
|                                | *Difference (Human-Like)*      | -0.65       | **-9.29**  | **+3.02**| **+1.73**      | -0.34    | +0.91    | +0.03        |


# 📊 Dataset

The dataset used for fine-tuning was generated using LLaMA 3 models. The dataset includes 10,884 samples across 256 distinct topics such as technology, daily life, science, history, and arts. Each sample consists of:

- **Human-like responses:** Natural, conversational answers mimicking human dialogue.
- **Formal responses:** Structured and precise answers with a more formal tone.

The dataset has been open-sourced and is available at:

- 👉 [Human-Like-DPO-Dataset](https://huggingface.co/datasets/HumanLLMs/Human-Like-DPO-Dataset)

More details on the dataset creation process can be found in the accompanying research paper.

# 📝 Citation

```
@misc{çalık2025enhancinghumanlikeresponseslarge,
      title={Enhancing Human-Like Responses in Large Language Models}, 
      author={Ethem Yağız Çalık and Talha Rüzgar Akkuş},
      year={2025},
      eprint={2501.05032},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2501.05032}, 
}
```