File size: 10,365 Bytes
42f73ad 1a65662 42f73ad 92c0c75 1a65662 92c0c75 1a65662 92c0c75 1a65662 92c0c75 1a65662 92c0c75 1a65662 92c0c75 1a65662 92c0c75 1a65662 92c0c75 1a65662 e60fcf7 42f73ad a393e40 42f73ad a393e40 6e9be55 a393e40 8312571 a393e40 42f73ad a393e40 42f73ad a393e40 42f73ad a393e40 42f73ad a393e40 42f73ad a393e40 42f73ad a393e40 42f73ad a393e40 42f73ad 0529d7e a393e40 42f73ad a393e40 42f73ad a393e40 42f73ad a393e40 42f73ad a393e40 42f73ad a393e40 42f73ad a393e40 42f73ad a393e40 1a65662 a393e40 1a65662 a393e40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
---
license: llama3
tags:
- axolotl
- dpo
- trl
base_model: meta-llama/Meta-Llama-3-8B-Instruct
datasets:
- HumanLLMs/Human-Like-DPO-Dataset
model-index:
- name: Humanish-LLama3.1-8B-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 64.98
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-LLama3.1-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 28.01
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-LLama3.1-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 8.46
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-LLama3.1-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 0.78
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-LLama3.1-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-LLama3.1-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 30.02
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-LLama3.1-8B-Instruct
name: Open LLM Leaderboard
pipeline_tag: text-generation
library_name: transformers
---
<div align="center">
<img src="https://cdn-avatars.huggingface.co/v1/production/uploads/63da3d7ae697e5898cb86854/H-vpXOX6KZu01HnV87Jk5.jpeg" width="320" height="320" />
<h1>Enhancing Human-Like Responses in Large Language Models</h1>
</div>
<p align="center">
   | 🤗 <a href="https://huggingface.co/collections/HumanLLMs/human-like-humanish-llms-6759fa68f22e11eb1a10967e">Models</a>   |
   📊 <a href="https://huggingface.co/datasets/HumanLLMs/Human-Like-DPO-Dataset">Dataset</a>   |
   📄<a href="https://arxiv.org/abs/2501.05032">Paper</a>   |
</p>
# 🚀 Human-Like-Llama3-8B-Instruct
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), specifically optimized to generate more human-like and conversational responses.
The fine-tuning process employed both [Low-Rank Adaptation (LoRA)](https://arxiv.org/abs/2106.09685) and [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290) to enhance natural language understanding, conversational coherence, and emotional intelligence in interactions.
The proccess of creating this models is detailed in the research paper [“Enhancing Human-Like Responses in Large Language Models”](https://arxiv.org/abs/2501.05032).
# 🛠️ Training Configuration
- **Base Model:** Llama3-8B-Instruct
- **Framework:** Axolotl v0.4.1
- **Hardware:** 2x NVIDIA A100 (80 GB) GPUs
- **Training Time:** ~2 hours 20 minutes
- **Dataset:** Synthetic dataset with ≈11,000 samples across 256 diverse topics
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
chat_template: llama3
rl: dpo
datasets:
- path: HumanLLMs/humanish-dpo-project
type: llama3.prompt_pairs
chat_template: llama3
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./humanish-llama3-8b-instruct
sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 8
lora_alpha: 4
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: Humanish-DPO
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: HumanLLMs/Humanish-LLama3.1-8B-Instruct
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
save_safetensors: true
```
</details><br>
# 💬 Prompt Template
You can use Llama3 prompt template while using the model:
### Llama3
```
<|start_header_id|>system<|end_header_id|>
{system}<|eot_id|>
<|start_header_id|>user<|end_header_id|>
{user}<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
{assistant}<|eot_id|>
```
This prompt template is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
`tokenizer.apply_chat_template()` method:
```python
messages = [
{"role": "system", "content": "You are helpful AI asistant."},
{"role": "user", "content": "Hello!"}
]
gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
model.generate(**gen_input)
```
# 🤖 Models
| Model | Download |
|:---------------------:|:-----------------------------------------------------------------------:|
| Human-Like-Llama-3-8B-Instruct | 🤗 [HuggingFace](https://huggingface.co/HumanLLMs/Human-Like-LLama3-8B-Instruct) |
| Human-Like-Qwen-2.5-7B-Instruct | 🤗 [HuggingFace](https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct) |
| Human-Like-Mistral-Nemo-Instruct | 🤗 [HuggingFace](https://huggingface.co/HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407) |
# 🔄 Quantizationed versions
## GGUF [@bartowski](https://huggingface.co/bartowski)
- https://huggingface.co/bartowski/Human-Like-LLama3-8B-Instruct-GGUF
- https://huggingface.co/bartowski/Human-Like-Qwen2.5-7B-Instruct-GGUF
- https://huggingface.co/bartowski/Human-Like-Mistral-Nemo-Instruct-2407-GGUF
# 🎯 Benchmark Results
| **Group** | **Model** | **Average** | **IFEval** | **BBH** | **MATH Lvl 5** | **GPQA** | **MuSR** | **MMLU-PRO** |
|--------------------------------|--------------------------------|-------------|------------|---------|----------------|----------|----------|--------------|
| **Llama Models** | Human-Like-Llama-3-8B-Instruct | 22.37 | **64.97** | 28.01 | 8.45 | 0.78 | **2.00** | 30.01 |
| | Llama-3-8B-Instruct | 23.57 | 74.08 | 28.24 | 8.68 | 1.23 | 1.60 | 29.60 |
| | *Difference (Human-Like)* | -1.20 | **-9.11** | -0.23 | -0.23 | -0.45 | +0.40 | +0.41 |
| **Qwen Models** | Human-Like-Qwen-2.5-7B-Instruct | 26.66 | 72.84 | 34.48 | 0.00 | 6.49 | 8.42 | 37.76 |
| | Qwen-2.5-7B-Instruct | 26.86 | 75.85 | 34.89 | 0.00 | 5.48 | 8.45 | 36.52 |
| | *Difference (Human-Like)* | -0.20 | -3.01 | -0.41 | 0.00 | **+1.01**| -0.03 | **+1.24** |
| **Mistral Models** | Human-Like-Mistral-Nemo-Instruct | 22.88 | **54.51** | 32.70 | 7.62 | 5.03 | 9.39 | 28.00 |
| | Mistral-Nemo-Instruct | 23.53 | 63.80 | 29.68 | 5.89 | 5.37 | 8.48 | 27.97 |
| | *Difference (Human-Like)* | -0.65 | **-9.29** | **+3.02**| **+1.73** | -0.34 | +0.91 | +0.03 |
# 📊 Dataset
The dataset used for fine-tuning was generated using LLaMA 3 models. The dataset includes 10,884 samples across 256 distinct topics such as technology, daily life, science, history, and arts. Each sample consists of:
- **Human-like responses:** Natural, conversational answers mimicking human dialogue.
- **Formal responses:** Structured and precise answers with a more formal tone.
The dataset has been open-sourced and is available at:
- 👉 [Human-Like-DPO-Dataset](https://huggingface.co/datasets/HumanLLMs/Human-Like-DPO-Dataset)
More details on the dataset creation process can be found in the accompanying research paper.
# 📝 Citation
```
@misc{çalık2025enhancinghumanlikeresponseslarge,
title={Enhancing Human-Like Responses in Large Language Models},
author={Ethem Yağız Çalık and Talha Rüzgar Akkuş},
year={2025},
eprint={2501.05032},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2501.05032},
}
``` |