File size: 1,974 Bytes
6240df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: peft
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: build_your_circuit_lora_v3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# build_your_circuit_lora_v3

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5612
- Bleu: 0.5934

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Bleu   |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.7731        | 0.2211 | 500  | 0.6249          | 0.5426 |
| 0.755         | 0.4423 | 1000 | 0.6122          | 0.5651 |
| 0.7409        | 0.6634 | 1500 | 0.6052          | 0.5805 |
| 0.7283        | 0.8846 | 2000 | 0.5954          | 0.5881 |
| 0.7189        | 1.1057 | 2500 | 0.5888          | 0.6041 |
| 0.7068        | 1.3268 | 3000 | 0.5793          | 0.5852 |
| 0.6969        | 1.5480 | 3500 | 0.5710          | 0.5938 |
| 0.6868        | 1.7691 | 4000 | 0.5666          | 0.5882 |
| 0.6811        | 1.9903 | 4500 | 0.5612          | 0.5934 |


### Framework versions

- PEFT 0.15.2
- Transformers 4.56.1
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.22.0