|
{ |
|
"best_metric": null, |
|
"best_model_checkpoint": null, |
|
"epoch": 0.8254041040926287, |
|
"global_step": 1800, |
|
"is_hyper_param_search": false, |
|
"is_local_process_zero": true, |
|
"is_world_process_zero": true, |
|
"log_history": [ |
|
{ |
|
"epoch": 0.0, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7825, |
|
"step": 10 |
|
}, |
|
{ |
|
"epoch": 0.01, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7565, |
|
"step": 20 |
|
}, |
|
{ |
|
"epoch": 0.01, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7408, |
|
"step": 30 |
|
}, |
|
{ |
|
"epoch": 0.02, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7496, |
|
"step": 40 |
|
}, |
|
{ |
|
"epoch": 0.02, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7424, |
|
"step": 50 |
|
}, |
|
{ |
|
"epoch": 0.03, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7112, |
|
"step": 60 |
|
}, |
|
{ |
|
"epoch": 0.03, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7409, |
|
"step": 70 |
|
}, |
|
{ |
|
"epoch": 0.04, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7646, |
|
"step": 80 |
|
}, |
|
{ |
|
"epoch": 0.04, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7129, |
|
"step": 90 |
|
}, |
|
{ |
|
"epoch": 0.05, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7671, |
|
"step": 100 |
|
}, |
|
{ |
|
"epoch": 0.05, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7166, |
|
"step": 110 |
|
}, |
|
{ |
|
"epoch": 0.06, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7113, |
|
"step": 120 |
|
}, |
|
{ |
|
"epoch": 0.06, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6682, |
|
"step": 130 |
|
}, |
|
{ |
|
"epoch": 0.06, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7644, |
|
"step": 140 |
|
}, |
|
{ |
|
"epoch": 0.07, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6813, |
|
"step": 150 |
|
}, |
|
{ |
|
"epoch": 0.07, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6447, |
|
"step": 160 |
|
}, |
|
{ |
|
"epoch": 0.08, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6587, |
|
"step": 170 |
|
}, |
|
{ |
|
"epoch": 0.08, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6657, |
|
"step": 180 |
|
}, |
|
{ |
|
"epoch": 0.09, |
|
"learning_rate": 0.0002, |
|
"loss": 0.681, |
|
"step": 190 |
|
}, |
|
{ |
|
"epoch": 0.09, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7142, |
|
"step": 200 |
|
}, |
|
{ |
|
"epoch": 0.09, |
|
"eval_loss": 0.6789492964744568, |
|
"eval_runtime": 280.115, |
|
"eval_samples_per_second": 3.57, |
|
"eval_steps_per_second": 0.892, |
|
"step": 200 |
|
}, |
|
{ |
|
"epoch": 0.09, |
|
"mmlu_eval_accuracy": 0.4601645000494307, |
|
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, |
|
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, |
|
"mmlu_eval_accuracy_astronomy": 0.4375, |
|
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, |
|
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, |
|
"mmlu_eval_accuracy_college_biology": 0.4375, |
|
"mmlu_eval_accuracy_college_chemistry": 0.125, |
|
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, |
|
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, |
|
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727, |
|
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, |
|
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, |
|
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, |
|
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, |
|
"mmlu_eval_accuracy_electrical_engineering": 0.375, |
|
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, |
|
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, |
|
"mmlu_eval_accuracy_global_facts": 0.6, |
|
"mmlu_eval_accuracy_high_school_biology": 0.34375, |
|
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, |
|
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, |
|
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, |
|
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, |
|
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, |
|
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, |
|
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, |
|
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, |
|
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, |
|
"mmlu_eval_accuracy_high_school_psychology": 0.75, |
|
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, |
|
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, |
|
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, |
|
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, |
|
"mmlu_eval_accuracy_human_sexuality": 0.5, |
|
"mmlu_eval_accuracy_international_law": 0.7692307692307693, |
|
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, |
|
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, |
|
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, |
|
"mmlu_eval_accuracy_management": 0.5454545454545454, |
|
"mmlu_eval_accuracy_marketing": 0.68, |
|
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, |
|
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, |
|
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, |
|
"mmlu_eval_accuracy_moral_scenarios": 0.24, |
|
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, |
|
"mmlu_eval_accuracy_philosophy": 0.47058823529411764, |
|
"mmlu_eval_accuracy_prehistory": 0.4857142857142857, |
|
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, |
|
"mmlu_eval_accuracy_professional_law": 0.3411764705882353, |
|
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, |
|
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, |
|
"mmlu_eval_accuracy_public_relations": 0.5, |
|
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, |
|
"mmlu_eval_accuracy_sociology": 0.5909090909090909, |
|
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, |
|
"mmlu_eval_accuracy_virology": 0.3888888888888889, |
|
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, |
|
"mmlu_loss": 0.9642877595465115, |
|
"step": 200 |
|
}, |
|
{ |
|
"epoch": 0.1, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6854, |
|
"step": 210 |
|
}, |
|
{ |
|
"epoch": 0.1, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7256, |
|
"step": 220 |
|
}, |
|
{ |
|
"epoch": 0.11, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7505, |
|
"step": 230 |
|
}, |
|
{ |
|
"epoch": 0.11, |
|
"learning_rate": 0.0002, |
|
"loss": 0.618, |
|
"step": 240 |
|
}, |
|
{ |
|
"epoch": 0.11, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6726, |
|
"step": 250 |
|
}, |
|
{ |
|
"epoch": 0.12, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6882, |
|
"step": 260 |
|
}, |
|
{ |
|
"epoch": 0.12, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6982, |
|
"step": 270 |
|
}, |
|
{ |
|
"epoch": 0.13, |
|
"learning_rate": 0.0002, |
|
"loss": 0.661, |
|
"step": 280 |
|
}, |
|
{ |
|
"epoch": 0.13, |
|
"learning_rate": 0.0002, |
|
"loss": 0.699, |
|
"step": 290 |
|
}, |
|
{ |
|
"epoch": 0.14, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6867, |
|
"step": 300 |
|
}, |
|
{ |
|
"epoch": 0.14, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7127, |
|
"step": 310 |
|
}, |
|
{ |
|
"epoch": 0.15, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7141, |
|
"step": 320 |
|
}, |
|
{ |
|
"epoch": 0.15, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6483, |
|
"step": 330 |
|
}, |
|
{ |
|
"epoch": 0.16, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6532, |
|
"step": 340 |
|
}, |
|
{ |
|
"epoch": 0.16, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6474, |
|
"step": 350 |
|
}, |
|
{ |
|
"epoch": 0.17, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6728, |
|
"step": 360 |
|
}, |
|
{ |
|
"epoch": 0.17, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6736, |
|
"step": 370 |
|
}, |
|
{ |
|
"epoch": 0.17, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7164, |
|
"step": 380 |
|
}, |
|
{ |
|
"epoch": 0.18, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6844, |
|
"step": 390 |
|
}, |
|
{ |
|
"epoch": 0.18, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6797, |
|
"step": 400 |
|
}, |
|
{ |
|
"epoch": 0.18, |
|
"eval_loss": 0.6707000732421875, |
|
"eval_runtime": 280.204, |
|
"eval_samples_per_second": 3.569, |
|
"eval_steps_per_second": 0.892, |
|
"step": 400 |
|
}, |
|
{ |
|
"epoch": 0.18, |
|
"mmlu_eval_accuracy": 0.4521886129310749, |
|
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, |
|
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, |
|
"mmlu_eval_accuracy_astronomy": 0.375, |
|
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, |
|
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, |
|
"mmlu_eval_accuracy_college_biology": 0.4375, |
|
"mmlu_eval_accuracy_college_chemistry": 0.0, |
|
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, |
|
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, |
|
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727, |
|
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, |
|
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, |
|
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, |
|
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, |
|
"mmlu_eval_accuracy_electrical_engineering": 0.375, |
|
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, |
|
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715, |
|
"mmlu_eval_accuracy_global_facts": 0.4, |
|
"mmlu_eval_accuracy_high_school_biology": 0.375, |
|
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, |
|
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, |
|
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, |
|
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, |
|
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, |
|
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, |
|
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, |
|
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, |
|
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, |
|
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, |
|
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, |
|
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, |
|
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, |
|
"mmlu_eval_accuracy_human_aging": 0.6521739130434783, |
|
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, |
|
"mmlu_eval_accuracy_international_law": 0.6923076923076923, |
|
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, |
|
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, |
|
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, |
|
"mmlu_eval_accuracy_management": 0.45454545454545453, |
|
"mmlu_eval_accuracy_marketing": 0.76, |
|
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, |
|
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, |
|
"mmlu_eval_accuracy_moral_disputes": 0.42105263157894735, |
|
"mmlu_eval_accuracy_moral_scenarios": 0.24, |
|
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, |
|
"mmlu_eval_accuracy_philosophy": 0.47058823529411764, |
|
"mmlu_eval_accuracy_prehistory": 0.5142857142857142, |
|
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, |
|
"mmlu_eval_accuracy_professional_law": 0.3411764705882353, |
|
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, |
|
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, |
|
"mmlu_eval_accuracy_public_relations": 0.4166666666666667, |
|
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, |
|
"mmlu_eval_accuracy_sociology": 0.6363636363636364, |
|
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, |
|
"mmlu_eval_accuracy_virology": 0.5, |
|
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, |
|
"mmlu_loss": 0.92568634446545, |
|
"step": 400 |
|
}, |
|
{ |
|
"epoch": 0.19, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7059, |
|
"step": 410 |
|
}, |
|
{ |
|
"epoch": 0.19, |
|
"learning_rate": 0.0002, |
|
"loss": 0.79, |
|
"step": 420 |
|
}, |
|
{ |
|
"epoch": 0.2, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7714, |
|
"step": 430 |
|
}, |
|
{ |
|
"epoch": 0.2, |
|
"learning_rate": 0.0002, |
|
"loss": 0.644, |
|
"step": 440 |
|
}, |
|
{ |
|
"epoch": 0.21, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7102, |
|
"step": 450 |
|
}, |
|
{ |
|
"epoch": 0.21, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6229, |
|
"step": 460 |
|
}, |
|
{ |
|
"epoch": 0.22, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6742, |
|
"step": 470 |
|
}, |
|
{ |
|
"epoch": 0.22, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6997, |
|
"step": 480 |
|
}, |
|
{ |
|
"epoch": 0.22, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6598, |
|
"step": 490 |
|
}, |
|
{ |
|
"epoch": 0.23, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7154, |
|
"step": 500 |
|
}, |
|
{ |
|
"epoch": 0.23, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6796, |
|
"step": 510 |
|
}, |
|
{ |
|
"epoch": 0.24, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6769, |
|
"step": 520 |
|
}, |
|
{ |
|
"epoch": 0.24, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6663, |
|
"step": 530 |
|
}, |
|
{ |
|
"epoch": 0.25, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6758, |
|
"step": 540 |
|
}, |
|
{ |
|
"epoch": 0.25, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7022, |
|
"step": 550 |
|
}, |
|
{ |
|
"epoch": 0.26, |
|
"learning_rate": 0.0002, |
|
"loss": 0.706, |
|
"step": 560 |
|
}, |
|
{ |
|
"epoch": 0.26, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7188, |
|
"step": 570 |
|
}, |
|
{ |
|
"epoch": 0.27, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7077, |
|
"step": 580 |
|
}, |
|
{ |
|
"epoch": 0.27, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6352, |
|
"step": 590 |
|
}, |
|
{ |
|
"epoch": 0.28, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6203, |
|
"step": 600 |
|
}, |
|
{ |
|
"epoch": 0.28, |
|
"eval_loss": 0.664973795413971, |
|
"eval_runtime": 280.1433, |
|
"eval_samples_per_second": 3.57, |
|
"eval_steps_per_second": 0.892, |
|
"step": 600 |
|
}, |
|
{ |
|
"epoch": 0.28, |
|
"mmlu_eval_accuracy": 0.44929002048717553, |
|
"mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091, |
|
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, |
|
"mmlu_eval_accuracy_astronomy": 0.375, |
|
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364, |
|
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, |
|
"mmlu_eval_accuracy_college_biology": 0.375, |
|
"mmlu_eval_accuracy_college_chemistry": 0.0, |
|
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, |
|
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, |
|
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365, |
|
"mmlu_eval_accuracy_college_physics": 0.36363636363636365, |
|
"mmlu_eval_accuracy_computer_security": 0.2727272727272727, |
|
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, |
|
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, |
|
"mmlu_eval_accuracy_electrical_engineering": 0.375, |
|
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, |
|
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, |
|
"mmlu_eval_accuracy_global_facts": 0.4, |
|
"mmlu_eval_accuracy_high_school_biology": 0.375, |
|
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, |
|
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, |
|
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, |
|
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, |
|
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, |
|
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, |
|
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, |
|
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, |
|
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, |
|
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, |
|
"mmlu_eval_accuracy_high_school_statistics": 0.21739130434782608, |
|
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, |
|
"mmlu_eval_accuracy_high_school_world_history": 0.5, |
|
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, |
|
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, |
|
"mmlu_eval_accuracy_international_law": 0.6923076923076923, |
|
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, |
|
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, |
|
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, |
|
"mmlu_eval_accuracy_management": 0.5454545454545454, |
|
"mmlu_eval_accuracy_marketing": 0.72, |
|
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, |
|
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907, |
|
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, |
|
"mmlu_eval_accuracy_moral_scenarios": 0.23, |
|
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, |
|
"mmlu_eval_accuracy_philosophy": 0.47058823529411764, |
|
"mmlu_eval_accuracy_prehistory": 0.42857142857142855, |
|
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, |
|
"mmlu_eval_accuracy_professional_law": 0.3588235294117647, |
|
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, |
|
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, |
|
"mmlu_eval_accuracy_public_relations": 0.4166666666666667, |
|
"mmlu_eval_accuracy_security_studies": 0.5555555555555556, |
|
"mmlu_eval_accuracy_sociology": 0.5909090909090909, |
|
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, |
|
"mmlu_eval_accuracy_virology": 0.5, |
|
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, |
|
"mmlu_loss": 0.9583329685985575, |
|
"step": 600 |
|
}, |
|
{ |
|
"epoch": 0.28, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6652, |
|
"step": 610 |
|
}, |
|
{ |
|
"epoch": 0.28, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6509, |
|
"step": 620 |
|
}, |
|
{ |
|
"epoch": 0.29, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6722, |
|
"step": 630 |
|
}, |
|
{ |
|
"epoch": 0.29, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7112, |
|
"step": 640 |
|
}, |
|
{ |
|
"epoch": 0.3, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6976, |
|
"step": 650 |
|
}, |
|
{ |
|
"epoch": 0.3, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6842, |
|
"step": 660 |
|
}, |
|
{ |
|
"epoch": 0.31, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6913, |
|
"step": 670 |
|
}, |
|
{ |
|
"epoch": 0.31, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6879, |
|
"step": 680 |
|
}, |
|
{ |
|
"epoch": 0.32, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6684, |
|
"step": 690 |
|
}, |
|
{ |
|
"epoch": 0.32, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7271, |
|
"step": 700 |
|
}, |
|
{ |
|
"epoch": 0.33, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6683, |
|
"step": 710 |
|
}, |
|
{ |
|
"epoch": 0.33, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6531, |
|
"step": 720 |
|
}, |
|
{ |
|
"epoch": 0.33, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6948, |
|
"step": 730 |
|
}, |
|
{ |
|
"epoch": 0.34, |
|
"learning_rate": 0.0002, |
|
"loss": 0.68, |
|
"step": 740 |
|
}, |
|
{ |
|
"epoch": 0.34, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6339, |
|
"step": 750 |
|
}, |
|
{ |
|
"epoch": 0.35, |
|
"learning_rate": 0.0002, |
|
"loss": 0.602, |
|
"step": 760 |
|
}, |
|
{ |
|
"epoch": 0.35, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6817, |
|
"step": 770 |
|
}, |
|
{ |
|
"epoch": 0.36, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6686, |
|
"step": 780 |
|
}, |
|
{ |
|
"epoch": 0.36, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6869, |
|
"step": 790 |
|
}, |
|
{ |
|
"epoch": 0.37, |
|
"learning_rate": 0.0002, |
|
"loss": 0.655, |
|
"step": 800 |
|
}, |
|
{ |
|
"epoch": 0.37, |
|
"eval_loss": 0.6593752503395081, |
|
"eval_runtime": 280.0748, |
|
"eval_samples_per_second": 3.57, |
|
"eval_steps_per_second": 0.893, |
|
"step": 800 |
|
}, |
|
{ |
|
"epoch": 0.37, |
|
"mmlu_eval_accuracy": 0.46269190662697585, |
|
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, |
|
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, |
|
"mmlu_eval_accuracy_astronomy": 0.5, |
|
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, |
|
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, |
|
"mmlu_eval_accuracy_college_biology": 0.4375, |
|
"mmlu_eval_accuracy_college_chemistry": 0.0, |
|
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, |
|
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, |
|
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365, |
|
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, |
|
"mmlu_eval_accuracy_computer_security": 0.45454545454545453, |
|
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, |
|
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, |
|
"mmlu_eval_accuracy_electrical_engineering": 0.3125, |
|
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, |
|
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, |
|
"mmlu_eval_accuracy_global_facts": 0.4, |
|
"mmlu_eval_accuracy_high_school_biology": 0.34375, |
|
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, |
|
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, |
|
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, |
|
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, |
|
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, |
|
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, |
|
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, |
|
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, |
|
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, |
|
"mmlu_eval_accuracy_high_school_psychology": 0.7, |
|
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, |
|
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, |
|
"mmlu_eval_accuracy_high_school_world_history": 0.5, |
|
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, |
|
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, |
|
"mmlu_eval_accuracy_international_law": 0.7692307692307693, |
|
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, |
|
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, |
|
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365, |
|
"mmlu_eval_accuracy_management": 0.5454545454545454, |
|
"mmlu_eval_accuracy_marketing": 0.76, |
|
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, |
|
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, |
|
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, |
|
"mmlu_eval_accuracy_moral_scenarios": 0.22, |
|
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, |
|
"mmlu_eval_accuracy_philosophy": 0.5, |
|
"mmlu_eval_accuracy_prehistory": 0.45714285714285713, |
|
"mmlu_eval_accuracy_professional_accounting": 0.22580645161290322, |
|
"mmlu_eval_accuracy_professional_law": 0.32941176470588235, |
|
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, |
|
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087, |
|
"mmlu_eval_accuracy_public_relations": 0.5, |
|
"mmlu_eval_accuracy_security_studies": 0.5925925925925926, |
|
"mmlu_eval_accuracy_sociology": 0.6363636363636364, |
|
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, |
|
"mmlu_eval_accuracy_virology": 0.4444444444444444, |
|
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, |
|
"mmlu_loss": 1.1274755495957856, |
|
"step": 800 |
|
}, |
|
{ |
|
"epoch": 0.37, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7119, |
|
"step": 810 |
|
}, |
|
{ |
|
"epoch": 0.38, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6581, |
|
"step": 820 |
|
}, |
|
{ |
|
"epoch": 0.38, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6475, |
|
"step": 830 |
|
}, |
|
{ |
|
"epoch": 0.39, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6944, |
|
"step": 840 |
|
}, |
|
{ |
|
"epoch": 0.39, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6469, |
|
"step": 850 |
|
}, |
|
{ |
|
"epoch": 0.39, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7231, |
|
"step": 860 |
|
}, |
|
{ |
|
"epoch": 0.4, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6182, |
|
"step": 870 |
|
}, |
|
{ |
|
"epoch": 0.4, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7032, |
|
"step": 880 |
|
}, |
|
{ |
|
"epoch": 0.41, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6291, |
|
"step": 890 |
|
}, |
|
{ |
|
"epoch": 0.41, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6845, |
|
"step": 900 |
|
}, |
|
{ |
|
"epoch": 0.42, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7016, |
|
"step": 910 |
|
}, |
|
{ |
|
"epoch": 0.42, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6921, |
|
"step": 920 |
|
}, |
|
{ |
|
"epoch": 0.43, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6908, |
|
"step": 930 |
|
}, |
|
{ |
|
"epoch": 0.43, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7402, |
|
"step": 940 |
|
}, |
|
{ |
|
"epoch": 0.44, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6553, |
|
"step": 950 |
|
}, |
|
{ |
|
"epoch": 0.44, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6525, |
|
"step": 960 |
|
}, |
|
{ |
|
"epoch": 0.44, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7003, |
|
"step": 970 |
|
}, |
|
{ |
|
"epoch": 0.45, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7082, |
|
"step": 980 |
|
}, |
|
{ |
|
"epoch": 0.45, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6757, |
|
"step": 990 |
|
}, |
|
{ |
|
"epoch": 0.46, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6803, |
|
"step": 1000 |
|
}, |
|
{ |
|
"epoch": 0.46, |
|
"eval_loss": 0.656200647354126, |
|
"eval_runtime": 279.9415, |
|
"eval_samples_per_second": 3.572, |
|
"eval_steps_per_second": 0.893, |
|
"step": 1000 |
|
}, |
|
{ |
|
"epoch": 0.46, |
|
"mmlu_eval_accuracy": 0.46074490234022447, |
|
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, |
|
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, |
|
"mmlu_eval_accuracy_astronomy": 0.4375, |
|
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, |
|
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, |
|
"mmlu_eval_accuracy_college_biology": 0.4375, |
|
"mmlu_eval_accuracy_college_chemistry": 0.125, |
|
"mmlu_eval_accuracy_college_computer_science": 0.5454545454545454, |
|
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, |
|
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365, |
|
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, |
|
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, |
|
"mmlu_eval_accuracy_conceptual_physics": 0.5, |
|
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, |
|
"mmlu_eval_accuracy_electrical_engineering": 0.4375, |
|
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, |
|
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, |
|
"mmlu_eval_accuracy_global_facts": 0.5, |
|
"mmlu_eval_accuracy_high_school_biology": 0.375, |
|
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, |
|
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, |
|
"mmlu_eval_accuracy_high_school_european_history": 0.5, |
|
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, |
|
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, |
|
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, |
|
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, |
|
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, |
|
"mmlu_eval_accuracy_high_school_physics": 0.23529411764705882, |
|
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, |
|
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, |
|
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, |
|
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, |
|
"mmlu_eval_accuracy_human_aging": 0.6521739130434783, |
|
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, |
|
"mmlu_eval_accuracy_international_law": 0.7692307692307693, |
|
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, |
|
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, |
|
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, |
|
"mmlu_eval_accuracy_management": 0.6363636363636364, |
|
"mmlu_eval_accuracy_marketing": 0.76, |
|
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, |
|
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, |
|
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, |
|
"mmlu_eval_accuracy_moral_scenarios": 0.23, |
|
"mmlu_eval_accuracy_nutrition": 0.6060606060606061, |
|
"mmlu_eval_accuracy_philosophy": 0.5, |
|
"mmlu_eval_accuracy_prehistory": 0.42857142857142855, |
|
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, |
|
"mmlu_eval_accuracy_professional_law": 0.34705882352941175, |
|
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, |
|
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087, |
|
"mmlu_eval_accuracy_public_relations": 0.4166666666666667, |
|
"mmlu_eval_accuracy_security_studies": 0.5555555555555556, |
|
"mmlu_eval_accuracy_sociology": 0.5909090909090909, |
|
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, |
|
"mmlu_eval_accuracy_virology": 0.5555555555555556, |
|
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, |
|
"mmlu_loss": 1.016490816680943, |
|
"step": 1000 |
|
}, |
|
{ |
|
"epoch": 0.46, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6489, |
|
"step": 1010 |
|
}, |
|
{ |
|
"epoch": 0.47, |
|
"learning_rate": 0.0002, |
|
"loss": 0.5919, |
|
"step": 1020 |
|
}, |
|
{ |
|
"epoch": 0.47, |
|
"learning_rate": 0.0002, |
|
"loss": 0.721, |
|
"step": 1030 |
|
}, |
|
{ |
|
"epoch": 0.48, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6696, |
|
"step": 1040 |
|
}, |
|
{ |
|
"epoch": 0.48, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6976, |
|
"step": 1050 |
|
}, |
|
{ |
|
"epoch": 0.49, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6665, |
|
"step": 1060 |
|
}, |
|
{ |
|
"epoch": 0.49, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6343, |
|
"step": 1070 |
|
}, |
|
{ |
|
"epoch": 0.5, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6133, |
|
"step": 1080 |
|
}, |
|
{ |
|
"epoch": 0.5, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6259, |
|
"step": 1090 |
|
}, |
|
{ |
|
"epoch": 0.5, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6446, |
|
"step": 1100 |
|
}, |
|
{ |
|
"epoch": 0.51, |
|
"learning_rate": 0.0002, |
|
"loss": 0.705, |
|
"step": 1110 |
|
}, |
|
{ |
|
"epoch": 0.51, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6445, |
|
"step": 1120 |
|
}, |
|
{ |
|
"epoch": 0.52, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7156, |
|
"step": 1130 |
|
}, |
|
{ |
|
"epoch": 0.52, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6842, |
|
"step": 1140 |
|
}, |
|
{ |
|
"epoch": 0.53, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6528, |
|
"step": 1150 |
|
}, |
|
{ |
|
"epoch": 0.53, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7015, |
|
"step": 1160 |
|
}, |
|
{ |
|
"epoch": 0.54, |
|
"learning_rate": 0.0002, |
|
"loss": 0.679, |
|
"step": 1170 |
|
}, |
|
{ |
|
"epoch": 0.54, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6509, |
|
"step": 1180 |
|
}, |
|
{ |
|
"epoch": 0.55, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6369, |
|
"step": 1190 |
|
}, |
|
{ |
|
"epoch": 0.55, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6512, |
|
"step": 1200 |
|
}, |
|
{ |
|
"epoch": 0.55, |
|
"eval_loss": 0.6535513997077942, |
|
"eval_runtime": 279.9064, |
|
"eval_samples_per_second": 3.573, |
|
"eval_steps_per_second": 0.893, |
|
"step": 1200 |
|
}, |
|
{ |
|
"epoch": 0.55, |
|
"mmlu_eval_accuracy": 0.4563086650055728, |
|
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, |
|
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, |
|
"mmlu_eval_accuracy_astronomy": 0.375, |
|
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364, |
|
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, |
|
"mmlu_eval_accuracy_college_biology": 0.4375, |
|
"mmlu_eval_accuracy_college_chemistry": 0.0, |
|
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, |
|
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, |
|
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182, |
|
"mmlu_eval_accuracy_college_physics": 0.36363636363636365, |
|
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, |
|
"mmlu_eval_accuracy_conceptual_physics": 0.5, |
|
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, |
|
"mmlu_eval_accuracy_electrical_engineering": 0.375, |
|
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, |
|
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, |
|
"mmlu_eval_accuracy_global_facts": 0.5, |
|
"mmlu_eval_accuracy_high_school_biology": 0.375, |
|
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, |
|
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, |
|
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, |
|
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, |
|
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, |
|
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, |
|
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, |
|
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, |
|
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, |
|
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, |
|
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, |
|
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, |
|
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, |
|
"mmlu_eval_accuracy_human_aging": 0.7391304347826086, |
|
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, |
|
"mmlu_eval_accuracy_international_law": 0.7692307692307693, |
|
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, |
|
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, |
|
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, |
|
"mmlu_eval_accuracy_management": 0.5454545454545454, |
|
"mmlu_eval_accuracy_marketing": 0.76, |
|
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, |
|
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907, |
|
"mmlu_eval_accuracy_moral_disputes": 0.3684210526315789, |
|
"mmlu_eval_accuracy_moral_scenarios": 0.23, |
|
"mmlu_eval_accuracy_nutrition": 0.6060606060606061, |
|
"mmlu_eval_accuracy_philosophy": 0.47058823529411764, |
|
"mmlu_eval_accuracy_prehistory": 0.42857142857142855, |
|
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, |
|
"mmlu_eval_accuracy_professional_law": 0.34705882352941175, |
|
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355, |
|
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087, |
|
"mmlu_eval_accuracy_public_relations": 0.4166666666666667, |
|
"mmlu_eval_accuracy_security_studies": 0.5555555555555556, |
|
"mmlu_eval_accuracy_sociology": 0.5909090909090909, |
|
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, |
|
"mmlu_eval_accuracy_virology": 0.4444444444444444, |
|
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, |
|
"mmlu_loss": 1.0143195821006366, |
|
"step": 1200 |
|
}, |
|
{ |
|
"epoch": 0.55, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6658, |
|
"step": 1210 |
|
}, |
|
{ |
|
"epoch": 0.56, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7283, |
|
"step": 1220 |
|
}, |
|
{ |
|
"epoch": 0.56, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6944, |
|
"step": 1230 |
|
}, |
|
{ |
|
"epoch": 0.57, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6326, |
|
"step": 1240 |
|
}, |
|
{ |
|
"epoch": 0.57, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6574, |
|
"step": 1250 |
|
}, |
|
{ |
|
"epoch": 0.58, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6239, |
|
"step": 1260 |
|
}, |
|
{ |
|
"epoch": 0.58, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7219, |
|
"step": 1270 |
|
}, |
|
{ |
|
"epoch": 0.59, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6704, |
|
"step": 1280 |
|
}, |
|
{ |
|
"epoch": 0.59, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6708, |
|
"step": 1290 |
|
}, |
|
{ |
|
"epoch": 0.6, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6862, |
|
"step": 1300 |
|
}, |
|
{ |
|
"epoch": 0.6, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6771, |
|
"step": 1310 |
|
}, |
|
{ |
|
"epoch": 0.61, |
|
"learning_rate": 0.0002, |
|
"loss": 0.661, |
|
"step": 1320 |
|
}, |
|
{ |
|
"epoch": 0.61, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6742, |
|
"step": 1330 |
|
}, |
|
{ |
|
"epoch": 0.61, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6734, |
|
"step": 1340 |
|
}, |
|
{ |
|
"epoch": 0.62, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6798, |
|
"step": 1350 |
|
}, |
|
{ |
|
"epoch": 0.62, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6152, |
|
"step": 1360 |
|
}, |
|
{ |
|
"epoch": 0.63, |
|
"learning_rate": 0.0002, |
|
"loss": 0.671, |
|
"step": 1370 |
|
}, |
|
{ |
|
"epoch": 0.63, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7562, |
|
"step": 1380 |
|
}, |
|
{ |
|
"epoch": 0.64, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7571, |
|
"step": 1390 |
|
}, |
|
{ |
|
"epoch": 0.64, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6926, |
|
"step": 1400 |
|
}, |
|
{ |
|
"epoch": 0.64, |
|
"eval_loss": 0.6509103178977966, |
|
"eval_runtime": 280.3444, |
|
"eval_samples_per_second": 3.567, |
|
"eval_steps_per_second": 0.892, |
|
"step": 1400 |
|
}, |
|
{ |
|
"epoch": 0.64, |
|
"mmlu_eval_accuracy": 0.4563542680952826, |
|
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, |
|
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, |
|
"mmlu_eval_accuracy_astronomy": 0.375, |
|
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, |
|
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, |
|
"mmlu_eval_accuracy_college_biology": 0.375, |
|
"mmlu_eval_accuracy_college_chemistry": 0.125, |
|
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, |
|
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, |
|
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365, |
|
"mmlu_eval_accuracy_college_physics": 0.36363636363636365, |
|
"mmlu_eval_accuracy_computer_security": 0.45454545454545453, |
|
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, |
|
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, |
|
"mmlu_eval_accuracy_electrical_engineering": 0.375, |
|
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, |
|
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715, |
|
"mmlu_eval_accuracy_global_facts": 0.5, |
|
"mmlu_eval_accuracy_high_school_biology": 0.375, |
|
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, |
|
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, |
|
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, |
|
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, |
|
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, |
|
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, |
|
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, |
|
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, |
|
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, |
|
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, |
|
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, |
|
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, |
|
"mmlu_eval_accuracy_high_school_world_history": 0.5, |
|
"mmlu_eval_accuracy_human_aging": 0.7391304347826086, |
|
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, |
|
"mmlu_eval_accuracy_international_law": 0.7692307692307693, |
|
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, |
|
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, |
|
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, |
|
"mmlu_eval_accuracy_management": 0.5454545454545454, |
|
"mmlu_eval_accuracy_marketing": 0.76, |
|
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, |
|
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, |
|
"mmlu_eval_accuracy_moral_disputes": 0.42105263157894735, |
|
"mmlu_eval_accuracy_moral_scenarios": 0.23, |
|
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, |
|
"mmlu_eval_accuracy_philosophy": 0.5294117647058824, |
|
"mmlu_eval_accuracy_prehistory": 0.4, |
|
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, |
|
"mmlu_eval_accuracy_professional_law": 0.3411764705882353, |
|
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, |
|
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087, |
|
"mmlu_eval_accuracy_public_relations": 0.5, |
|
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, |
|
"mmlu_eval_accuracy_sociology": 0.5909090909090909, |
|
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, |
|
"mmlu_eval_accuracy_virology": 0.5, |
|
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, |
|
"mmlu_loss": 1.092854514290085, |
|
"step": 1400 |
|
}, |
|
{ |
|
"epoch": 0.65, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6375, |
|
"step": 1410 |
|
}, |
|
{ |
|
"epoch": 0.65, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6123, |
|
"step": 1420 |
|
}, |
|
{ |
|
"epoch": 0.66, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6628, |
|
"step": 1430 |
|
}, |
|
{ |
|
"epoch": 0.66, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7702, |
|
"step": 1440 |
|
}, |
|
{ |
|
"epoch": 0.66, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7076, |
|
"step": 1450 |
|
}, |
|
{ |
|
"epoch": 0.67, |
|
"learning_rate": 0.0002, |
|
"loss": 0.704, |
|
"step": 1460 |
|
}, |
|
{ |
|
"epoch": 0.67, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6406, |
|
"step": 1470 |
|
}, |
|
{ |
|
"epoch": 0.68, |
|
"learning_rate": 0.0002, |
|
"loss": 0.669, |
|
"step": 1480 |
|
}, |
|
{ |
|
"epoch": 0.68, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6253, |
|
"step": 1490 |
|
}, |
|
{ |
|
"epoch": 0.69, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6544, |
|
"step": 1500 |
|
}, |
|
{ |
|
"epoch": 0.69, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6018, |
|
"step": 1510 |
|
}, |
|
{ |
|
"epoch": 0.7, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6673, |
|
"step": 1520 |
|
}, |
|
{ |
|
"epoch": 0.7, |
|
"learning_rate": 0.0002, |
|
"loss": 0.705, |
|
"step": 1530 |
|
}, |
|
{ |
|
"epoch": 0.71, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6875, |
|
"step": 1540 |
|
}, |
|
{ |
|
"epoch": 0.71, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6864, |
|
"step": 1550 |
|
}, |
|
{ |
|
"epoch": 0.72, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6465, |
|
"step": 1560 |
|
}, |
|
{ |
|
"epoch": 0.72, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6714, |
|
"step": 1570 |
|
}, |
|
{ |
|
"epoch": 0.72, |
|
"learning_rate": 0.0002, |
|
"loss": 0.627, |
|
"step": 1580 |
|
}, |
|
{ |
|
"epoch": 0.73, |
|
"learning_rate": 0.0002, |
|
"loss": 0.5958, |
|
"step": 1590 |
|
}, |
|
{ |
|
"epoch": 0.73, |
|
"learning_rate": 0.0002, |
|
"loss": 0.62, |
|
"step": 1600 |
|
}, |
|
{ |
|
"epoch": 0.73, |
|
"eval_loss": 0.6470592617988586, |
|
"eval_runtime": 280.3872, |
|
"eval_samples_per_second": 3.566, |
|
"eval_steps_per_second": 0.892, |
|
"step": 1600 |
|
}, |
|
{ |
|
"epoch": 0.73, |
|
"mmlu_eval_accuracy": 0.448089860540604, |
|
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, |
|
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, |
|
"mmlu_eval_accuracy_astronomy": 0.375, |
|
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, |
|
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, |
|
"mmlu_eval_accuracy_college_biology": 0.3125, |
|
"mmlu_eval_accuracy_college_chemistry": 0.25, |
|
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, |
|
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, |
|
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182, |
|
"mmlu_eval_accuracy_college_physics": 0.36363636363636365, |
|
"mmlu_eval_accuracy_computer_security": 0.2727272727272727, |
|
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, |
|
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, |
|
"mmlu_eval_accuracy_electrical_engineering": 0.375, |
|
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, |
|
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427, |
|
"mmlu_eval_accuracy_global_facts": 0.5, |
|
"mmlu_eval_accuracy_high_school_biology": 0.34375, |
|
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, |
|
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, |
|
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, |
|
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, |
|
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, |
|
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, |
|
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, |
|
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, |
|
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, |
|
"mmlu_eval_accuracy_high_school_psychology": 0.7, |
|
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, |
|
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, |
|
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, |
|
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, |
|
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, |
|
"mmlu_eval_accuracy_international_law": 0.7692307692307693, |
|
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, |
|
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, |
|
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, |
|
"mmlu_eval_accuracy_management": 0.45454545454545453, |
|
"mmlu_eval_accuracy_marketing": 0.84, |
|
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, |
|
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, |
|
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, |
|
"mmlu_eval_accuracy_moral_scenarios": 0.23, |
|
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, |
|
"mmlu_eval_accuracy_philosophy": 0.5294117647058824, |
|
"mmlu_eval_accuracy_prehistory": 0.4, |
|
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, |
|
"mmlu_eval_accuracy_professional_law": 0.3411764705882353, |
|
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, |
|
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, |
|
"mmlu_eval_accuracy_public_relations": 0.5, |
|
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, |
|
"mmlu_eval_accuracy_sociology": 0.6363636363636364, |
|
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, |
|
"mmlu_eval_accuracy_virology": 0.5, |
|
"mmlu_eval_accuracy_world_religions": 0.6842105263157895, |
|
"mmlu_loss": 0.9696583512090827, |
|
"step": 1600 |
|
}, |
|
{ |
|
"epoch": 0.74, |
|
"learning_rate": 0.0002, |
|
"loss": 0.722, |
|
"step": 1610 |
|
}, |
|
{ |
|
"epoch": 0.74, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6225, |
|
"step": 1620 |
|
}, |
|
{ |
|
"epoch": 0.75, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7043, |
|
"step": 1630 |
|
}, |
|
{ |
|
"epoch": 0.75, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6671, |
|
"step": 1640 |
|
}, |
|
{ |
|
"epoch": 0.76, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6424, |
|
"step": 1650 |
|
}, |
|
{ |
|
"epoch": 0.76, |
|
"learning_rate": 0.0002, |
|
"loss": 0.641, |
|
"step": 1660 |
|
}, |
|
{ |
|
"epoch": 0.77, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6494, |
|
"step": 1670 |
|
}, |
|
{ |
|
"epoch": 0.77, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6845, |
|
"step": 1680 |
|
}, |
|
{ |
|
"epoch": 0.77, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6646, |
|
"step": 1690 |
|
}, |
|
{ |
|
"epoch": 0.78, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6706, |
|
"step": 1700 |
|
}, |
|
{ |
|
"epoch": 0.78, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6993, |
|
"step": 1710 |
|
}, |
|
{ |
|
"epoch": 0.79, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6672, |
|
"step": 1720 |
|
}, |
|
{ |
|
"epoch": 0.79, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6114, |
|
"step": 1730 |
|
}, |
|
{ |
|
"epoch": 0.8, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7194, |
|
"step": 1740 |
|
}, |
|
{ |
|
"epoch": 0.8, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6669, |
|
"step": 1750 |
|
}, |
|
{ |
|
"epoch": 0.81, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6482, |
|
"step": 1760 |
|
}, |
|
{ |
|
"epoch": 0.81, |
|
"learning_rate": 0.0002, |
|
"loss": 0.681, |
|
"step": 1770 |
|
}, |
|
{ |
|
"epoch": 0.82, |
|
"learning_rate": 0.0002, |
|
"loss": 0.718, |
|
"step": 1780 |
|
}, |
|
{ |
|
"epoch": 0.82, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6948, |
|
"step": 1790 |
|
}, |
|
{ |
|
"epoch": 0.83, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6835, |
|
"step": 1800 |
|
}, |
|
{ |
|
"epoch": 0.83, |
|
"eval_loss": 0.6446049809455872, |
|
"eval_runtime": 280.3145, |
|
"eval_samples_per_second": 3.567, |
|
"eval_steps_per_second": 0.892, |
|
"step": 1800 |
|
}, |
|
{ |
|
"epoch": 0.83, |
|
"mmlu_eval_accuracy": 0.45510585655253843, |
|
"mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091, |
|
"mmlu_eval_accuracy_anatomy": 0.5, |
|
"mmlu_eval_accuracy_astronomy": 0.375, |
|
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, |
|
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, |
|
"mmlu_eval_accuracy_college_biology": 0.375, |
|
"mmlu_eval_accuracy_college_chemistry": 0.0, |
|
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, |
|
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, |
|
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365, |
|
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, |
|
"mmlu_eval_accuracy_computer_security": 0.2727272727272727, |
|
"mmlu_eval_accuracy_conceptual_physics": 0.5, |
|
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, |
|
"mmlu_eval_accuracy_electrical_engineering": 0.5625, |
|
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, |
|
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715, |
|
"mmlu_eval_accuracy_global_facts": 0.3, |
|
"mmlu_eval_accuracy_high_school_biology": 0.34375, |
|
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, |
|
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, |
|
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, |
|
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, |
|
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, |
|
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, |
|
"mmlu_eval_accuracy_high_school_mathematics": 0.3448275862068966, |
|
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, |
|
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, |
|
"mmlu_eval_accuracy_high_school_psychology": 0.7, |
|
"mmlu_eval_accuracy_high_school_statistics": 0.21739130434782608, |
|
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, |
|
"mmlu_eval_accuracy_high_school_world_history": 0.5, |
|
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, |
|
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, |
|
"mmlu_eval_accuracy_international_law": 0.6923076923076923, |
|
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, |
|
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, |
|
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, |
|
"mmlu_eval_accuracy_management": 0.45454545454545453, |
|
"mmlu_eval_accuracy_marketing": 0.84, |
|
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, |
|
"mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, |
|
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, |
|
"mmlu_eval_accuracy_moral_scenarios": 0.24, |
|
"mmlu_eval_accuracy_nutrition": 0.6363636363636364, |
|
"mmlu_eval_accuracy_philosophy": 0.5294117647058824, |
|
"mmlu_eval_accuracy_prehistory": 0.42857142857142855, |
|
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, |
|
"mmlu_eval_accuracy_professional_law": 0.3235294117647059, |
|
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, |
|
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, |
|
"mmlu_eval_accuracy_public_relations": 0.4166666666666667, |
|
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, |
|
"mmlu_eval_accuracy_sociology": 0.6363636363636364, |
|
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, |
|
"mmlu_eval_accuracy_virology": 0.5, |
|
"mmlu_eval_accuracy_world_religions": 0.7894736842105263, |
|
"mmlu_loss": 0.9942787007936921, |
|
"step": 1800 |
|
} |
|
], |
|
"max_steps": 5000, |
|
"num_train_epochs": 3, |
|
"total_flos": 5.1765837924836966e+17, |
|
"trial_name": null, |
|
"trial_params": null |
|
} |
|
|