prateeky2806's picture
Training in progress, step 2400
181690c
{
"best_metric": null,
"best_model_checkpoint": null,
"epoch": 1.1005388054568384,
"global_step": 2400,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.0,
"learning_rate": 0.0002,
"loss": 0.7825,
"step": 10
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7565,
"step": 20
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7408,
"step": 30
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7496,
"step": 40
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7424,
"step": 50
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7112,
"step": 60
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7409,
"step": 70
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.7646,
"step": 80
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.7129,
"step": 90
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7671,
"step": 100
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7166,
"step": 110
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.7113,
"step": 120
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.6682,
"step": 130
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.7644,
"step": 140
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.6813,
"step": 150
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.6447,
"step": 160
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.6587,
"step": 170
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.6657,
"step": 180
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.681,
"step": 190
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.7142,
"step": 200
},
{
"epoch": 0.09,
"eval_loss": 0.6789492964744568,
"eval_runtime": 280.115,
"eval_samples_per_second": 3.57,
"eval_steps_per_second": 0.892,
"step": 200
},
{
"epoch": 0.09,
"mmlu_eval_accuracy": 0.4601645000494307,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9642877595465115,
"step": 200
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.6854,
"step": 210
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7256,
"step": 220
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.7505,
"step": 230
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.618,
"step": 240
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.6726,
"step": 250
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.6882,
"step": 260
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.6982,
"step": 270
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.661,
"step": 280
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.699,
"step": 290
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.6867,
"step": 300
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.7127,
"step": 310
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.7141,
"step": 320
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.6483,
"step": 330
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.6532,
"step": 340
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.6474,
"step": 350
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.6728,
"step": 360
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.6736,
"step": 370
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.7164,
"step": 380
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.6844,
"step": 390
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.6797,
"step": 400
},
{
"epoch": 0.18,
"eval_loss": 0.6707000732421875,
"eval_runtime": 280.204,
"eval_samples_per_second": 3.569,
"eval_steps_per_second": 0.892,
"step": 400
},
{
"epoch": 0.18,
"mmlu_eval_accuracy": 0.4521886129310749,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.42105263157894735,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.92568634446545,
"step": 400
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.7059,
"step": 410
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.79,
"step": 420
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.7714,
"step": 430
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.644,
"step": 440
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.7102,
"step": 450
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.6229,
"step": 460
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.6742,
"step": 470
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.6997,
"step": 480
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.6598,
"step": 490
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.7154,
"step": 500
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.6796,
"step": 510
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.6769,
"step": 520
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.6663,
"step": 530
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.6758,
"step": 540
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.7022,
"step": 550
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.706,
"step": 560
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.7188,
"step": 570
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.7077,
"step": 580
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.6352,
"step": 590
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.6203,
"step": 600
},
{
"epoch": 0.28,
"eval_loss": 0.664973795413971,
"eval_runtime": 280.1433,
"eval_samples_per_second": 3.57,
"eval_steps_per_second": 0.892,
"step": 600
},
{
"epoch": 0.28,
"mmlu_eval_accuracy": 0.44929002048717553,
"mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.21739130434782608,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3588235294117647,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9583329685985575,
"step": 600
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.6652,
"step": 610
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.6509,
"step": 620
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 0.6722,
"step": 630
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 0.7112,
"step": 640
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.6976,
"step": 650
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.6842,
"step": 660
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.6913,
"step": 670
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.6879,
"step": 680
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.6684,
"step": 690
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.7271,
"step": 700
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.6683,
"step": 710
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.6531,
"step": 720
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.6948,
"step": 730
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.68,
"step": 740
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.6339,
"step": 750
},
{
"epoch": 0.35,
"learning_rate": 0.0002,
"loss": 0.602,
"step": 760
},
{
"epoch": 0.35,
"learning_rate": 0.0002,
"loss": 0.6817,
"step": 770
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.6686,
"step": 780
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.6869,
"step": 790
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.655,
"step": 800
},
{
"epoch": 0.37,
"eval_loss": 0.6593752503395081,
"eval_runtime": 280.0748,
"eval_samples_per_second": 3.57,
"eval_steps_per_second": 0.893,
"step": 800
},
{
"epoch": 0.37,
"mmlu_eval_accuracy": 0.46269190662697585,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.22,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.22580645161290322,
"mmlu_eval_accuracy_professional_law": 0.32941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5925925925925926,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.1274755495957856,
"step": 800
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.7119,
"step": 810
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 0.6581,
"step": 820
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 0.6475,
"step": 830
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.6944,
"step": 840
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.6469,
"step": 850
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.7231,
"step": 860
},
{
"epoch": 0.4,
"learning_rate": 0.0002,
"loss": 0.6182,
"step": 870
},
{
"epoch": 0.4,
"learning_rate": 0.0002,
"loss": 0.7032,
"step": 880
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.6291,
"step": 890
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.6845,
"step": 900
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.7016,
"step": 910
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.6921,
"step": 920
},
{
"epoch": 0.43,
"learning_rate": 0.0002,
"loss": 0.6908,
"step": 930
},
{
"epoch": 0.43,
"learning_rate": 0.0002,
"loss": 0.7402,
"step": 940
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.6553,
"step": 950
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.6525,
"step": 960
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.7003,
"step": 970
},
{
"epoch": 0.45,
"learning_rate": 0.0002,
"loss": 0.7082,
"step": 980
},
{
"epoch": 0.45,
"learning_rate": 0.0002,
"loss": 0.6757,
"step": 990
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 0.6803,
"step": 1000
},
{
"epoch": 0.46,
"eval_loss": 0.656200647354126,
"eval_runtime": 279.9415,
"eval_samples_per_second": 3.572,
"eval_steps_per_second": 0.893,
"step": 1000
},
{
"epoch": 0.46,
"mmlu_eval_accuracy": 0.46074490234022447,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.5454545454545454,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
"mmlu_eval_accuracy_high_school_physics": 0.23529411764705882,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.34705882352941175,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.016490816680943,
"step": 1000
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 0.6489,
"step": 1010
},
{
"epoch": 0.47,
"learning_rate": 0.0002,
"loss": 0.5919,
"step": 1020
},
{
"epoch": 0.47,
"learning_rate": 0.0002,
"loss": 0.721,
"step": 1030
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.6696,
"step": 1040
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.6976,
"step": 1050
},
{
"epoch": 0.49,
"learning_rate": 0.0002,
"loss": 0.6665,
"step": 1060
},
{
"epoch": 0.49,
"learning_rate": 0.0002,
"loss": 0.6343,
"step": 1070
},
{
"epoch": 0.5,
"learning_rate": 0.0002,
"loss": 0.6133,
"step": 1080
},
{
"epoch": 0.5,
"learning_rate": 0.0002,
"loss": 0.6259,
"step": 1090
},
{
"epoch": 0.5,
"learning_rate": 0.0002,
"loss": 0.6446,
"step": 1100
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.705,
"step": 1110
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.6445,
"step": 1120
},
{
"epoch": 0.52,
"learning_rate": 0.0002,
"loss": 0.7156,
"step": 1130
},
{
"epoch": 0.52,
"learning_rate": 0.0002,
"loss": 0.6842,
"step": 1140
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.6528,
"step": 1150
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.7015,
"step": 1160
},
{
"epoch": 0.54,
"learning_rate": 0.0002,
"loss": 0.679,
"step": 1170
},
{
"epoch": 0.54,
"learning_rate": 0.0002,
"loss": 0.6509,
"step": 1180
},
{
"epoch": 0.55,
"learning_rate": 0.0002,
"loss": 0.6369,
"step": 1190
},
{
"epoch": 0.55,
"learning_rate": 0.0002,
"loss": 0.6512,
"step": 1200
},
{
"epoch": 0.55,
"eval_loss": 0.6535513997077942,
"eval_runtime": 279.9064,
"eval_samples_per_second": 3.573,
"eval_steps_per_second": 0.893,
"step": 1200
},
{
"epoch": 0.55,
"mmlu_eval_accuracy": 0.4563086650055728,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.3684210526315789,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.34705882352941175,
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.0143195821006366,
"step": 1200
},
{
"epoch": 0.55,
"learning_rate": 0.0002,
"loss": 0.6658,
"step": 1210
},
{
"epoch": 0.56,
"learning_rate": 0.0002,
"loss": 0.7283,
"step": 1220
},
{
"epoch": 0.56,
"learning_rate": 0.0002,
"loss": 0.6944,
"step": 1230
},
{
"epoch": 0.57,
"learning_rate": 0.0002,
"loss": 0.6326,
"step": 1240
},
{
"epoch": 0.57,
"learning_rate": 0.0002,
"loss": 0.6574,
"step": 1250
},
{
"epoch": 0.58,
"learning_rate": 0.0002,
"loss": 0.6239,
"step": 1260
},
{
"epoch": 0.58,
"learning_rate": 0.0002,
"loss": 0.7219,
"step": 1270
},
{
"epoch": 0.59,
"learning_rate": 0.0002,
"loss": 0.6704,
"step": 1280
},
{
"epoch": 0.59,
"learning_rate": 0.0002,
"loss": 0.6708,
"step": 1290
},
{
"epoch": 0.6,
"learning_rate": 0.0002,
"loss": 0.6862,
"step": 1300
},
{
"epoch": 0.6,
"learning_rate": 0.0002,
"loss": 0.6771,
"step": 1310
},
{
"epoch": 0.61,
"learning_rate": 0.0002,
"loss": 0.661,
"step": 1320
},
{
"epoch": 0.61,
"learning_rate": 0.0002,
"loss": 0.6742,
"step": 1330
},
{
"epoch": 0.61,
"learning_rate": 0.0002,
"loss": 0.6734,
"step": 1340
},
{
"epoch": 0.62,
"learning_rate": 0.0002,
"loss": 0.6798,
"step": 1350
},
{
"epoch": 0.62,
"learning_rate": 0.0002,
"loss": 0.6152,
"step": 1360
},
{
"epoch": 0.63,
"learning_rate": 0.0002,
"loss": 0.671,
"step": 1370
},
{
"epoch": 0.63,
"learning_rate": 0.0002,
"loss": 0.7562,
"step": 1380
},
{
"epoch": 0.64,
"learning_rate": 0.0002,
"loss": 0.7571,
"step": 1390
},
{
"epoch": 0.64,
"learning_rate": 0.0002,
"loss": 0.6926,
"step": 1400
},
{
"epoch": 0.64,
"eval_loss": 0.6509103178977966,
"eval_runtime": 280.3444,
"eval_samples_per_second": 3.567,
"eval_steps_per_second": 0.892,
"step": 1400
},
{
"epoch": 0.64,
"mmlu_eval_accuracy": 0.4563542680952826,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.42105263157894735,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.092854514290085,
"step": 1400
},
{
"epoch": 0.65,
"learning_rate": 0.0002,
"loss": 0.6375,
"step": 1410
},
{
"epoch": 0.65,
"learning_rate": 0.0002,
"loss": 0.6123,
"step": 1420
},
{
"epoch": 0.66,
"learning_rate": 0.0002,
"loss": 0.6628,
"step": 1430
},
{
"epoch": 0.66,
"learning_rate": 0.0002,
"loss": 0.7702,
"step": 1440
},
{
"epoch": 0.66,
"learning_rate": 0.0002,
"loss": 0.7076,
"step": 1450
},
{
"epoch": 0.67,
"learning_rate": 0.0002,
"loss": 0.704,
"step": 1460
},
{
"epoch": 0.67,
"learning_rate": 0.0002,
"loss": 0.6406,
"step": 1470
},
{
"epoch": 0.68,
"learning_rate": 0.0002,
"loss": 0.669,
"step": 1480
},
{
"epoch": 0.68,
"learning_rate": 0.0002,
"loss": 0.6253,
"step": 1490
},
{
"epoch": 0.69,
"learning_rate": 0.0002,
"loss": 0.6544,
"step": 1500
},
{
"epoch": 0.69,
"learning_rate": 0.0002,
"loss": 0.6018,
"step": 1510
},
{
"epoch": 0.7,
"learning_rate": 0.0002,
"loss": 0.6673,
"step": 1520
},
{
"epoch": 0.7,
"learning_rate": 0.0002,
"loss": 0.705,
"step": 1530
},
{
"epoch": 0.71,
"learning_rate": 0.0002,
"loss": 0.6875,
"step": 1540
},
{
"epoch": 0.71,
"learning_rate": 0.0002,
"loss": 0.6864,
"step": 1550
},
{
"epoch": 0.72,
"learning_rate": 0.0002,
"loss": 0.6465,
"step": 1560
},
{
"epoch": 0.72,
"learning_rate": 0.0002,
"loss": 0.6714,
"step": 1570
},
{
"epoch": 0.72,
"learning_rate": 0.0002,
"loss": 0.627,
"step": 1580
},
{
"epoch": 0.73,
"learning_rate": 0.0002,
"loss": 0.5958,
"step": 1590
},
{
"epoch": 0.73,
"learning_rate": 0.0002,
"loss": 0.62,
"step": 1600
},
{
"epoch": 0.73,
"eval_loss": 0.6470592617988586,
"eval_runtime": 280.3872,
"eval_samples_per_second": 3.566,
"eval_steps_per_second": 0.892,
"step": 1600
},
{
"epoch": 0.73,
"mmlu_eval_accuracy": 0.448089860540604,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.3125,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.84,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 0.9696583512090827,
"step": 1600
},
{
"epoch": 0.74,
"learning_rate": 0.0002,
"loss": 0.722,
"step": 1610
},
{
"epoch": 0.74,
"learning_rate": 0.0002,
"loss": 0.6225,
"step": 1620
},
{
"epoch": 0.75,
"learning_rate": 0.0002,
"loss": 0.7043,
"step": 1630
},
{
"epoch": 0.75,
"learning_rate": 0.0002,
"loss": 0.6671,
"step": 1640
},
{
"epoch": 0.76,
"learning_rate": 0.0002,
"loss": 0.6424,
"step": 1650
},
{
"epoch": 0.76,
"learning_rate": 0.0002,
"loss": 0.641,
"step": 1660
},
{
"epoch": 0.77,
"learning_rate": 0.0002,
"loss": 0.6494,
"step": 1670
},
{
"epoch": 0.77,
"learning_rate": 0.0002,
"loss": 0.6845,
"step": 1680
},
{
"epoch": 0.77,
"learning_rate": 0.0002,
"loss": 0.6646,
"step": 1690
},
{
"epoch": 0.78,
"learning_rate": 0.0002,
"loss": 0.6706,
"step": 1700
},
{
"epoch": 0.78,
"learning_rate": 0.0002,
"loss": 0.6993,
"step": 1710
},
{
"epoch": 0.79,
"learning_rate": 0.0002,
"loss": 0.6672,
"step": 1720
},
{
"epoch": 0.79,
"learning_rate": 0.0002,
"loss": 0.6114,
"step": 1730
},
{
"epoch": 0.8,
"learning_rate": 0.0002,
"loss": 0.7194,
"step": 1740
},
{
"epoch": 0.8,
"learning_rate": 0.0002,
"loss": 0.6669,
"step": 1750
},
{
"epoch": 0.81,
"learning_rate": 0.0002,
"loss": 0.6482,
"step": 1760
},
{
"epoch": 0.81,
"learning_rate": 0.0002,
"loss": 0.681,
"step": 1770
},
{
"epoch": 0.82,
"learning_rate": 0.0002,
"loss": 0.718,
"step": 1780
},
{
"epoch": 0.82,
"learning_rate": 0.0002,
"loss": 0.6948,
"step": 1790
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.6835,
"step": 1800
},
{
"epoch": 0.83,
"eval_loss": 0.6446049809455872,
"eval_runtime": 280.3145,
"eval_samples_per_second": 3.567,
"eval_steps_per_second": 0.892,
"step": 1800
},
{
"epoch": 0.83,
"mmlu_eval_accuracy": 0.45510585655253843,
"mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.5625,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.3,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.3448275862068966,
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.21739130434782608,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.84,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6395348837209303,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6363636363636364,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.3235294117647059,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7894736842105263,
"mmlu_loss": 0.9942787007936921,
"step": 1800
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.7031,
"step": 1810
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.6805,
"step": 1820
},
{
"epoch": 0.84,
"learning_rate": 0.0002,
"loss": 0.6863,
"step": 1830
},
{
"epoch": 0.84,
"learning_rate": 0.0002,
"loss": 0.6567,
"step": 1840
},
{
"epoch": 0.85,
"learning_rate": 0.0002,
"loss": 0.6927,
"step": 1850
},
{
"epoch": 0.85,
"learning_rate": 0.0002,
"loss": 0.6175,
"step": 1860
},
{
"epoch": 0.86,
"learning_rate": 0.0002,
"loss": 0.6129,
"step": 1870
},
{
"epoch": 0.86,
"learning_rate": 0.0002,
"loss": 0.6336,
"step": 1880
},
{
"epoch": 0.87,
"learning_rate": 0.0002,
"loss": 0.6401,
"step": 1890
},
{
"epoch": 0.87,
"learning_rate": 0.0002,
"loss": 0.7285,
"step": 1900
},
{
"epoch": 0.88,
"learning_rate": 0.0002,
"loss": 0.6415,
"step": 1910
},
{
"epoch": 0.88,
"learning_rate": 0.0002,
"loss": 0.6468,
"step": 1920
},
{
"epoch": 0.89,
"learning_rate": 0.0002,
"loss": 0.6636,
"step": 1930
},
{
"epoch": 0.89,
"learning_rate": 0.0002,
"loss": 0.6919,
"step": 1940
},
{
"epoch": 0.89,
"learning_rate": 0.0002,
"loss": 0.6298,
"step": 1950
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 0.6582,
"step": 1960
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 0.6691,
"step": 1970
},
{
"epoch": 0.91,
"learning_rate": 0.0002,
"loss": 0.6143,
"step": 1980
},
{
"epoch": 0.91,
"learning_rate": 0.0002,
"loss": 0.669,
"step": 1990
},
{
"epoch": 0.92,
"learning_rate": 0.0002,
"loss": 0.6456,
"step": 2000
},
{
"epoch": 0.92,
"eval_loss": 0.6425969004631042,
"eval_runtime": 280.0301,
"eval_samples_per_second": 3.571,
"eval_steps_per_second": 0.893,
"step": 2000
},
{
"epoch": 0.92,
"mmlu_eval_accuracy": 0.46047223663644893,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3588235294117647,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.3333333333333333,
"mmlu_eval_accuracy_security_studies": 0.5925925925925926,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.0820855114696541,
"step": 2000
},
{
"epoch": 0.92,
"learning_rate": 0.0002,
"loss": 0.6321,
"step": 2010
},
{
"epoch": 0.93,
"learning_rate": 0.0002,
"loss": 0.6499,
"step": 2020
},
{
"epoch": 0.93,
"learning_rate": 0.0002,
"loss": 0.6446,
"step": 2030
},
{
"epoch": 0.94,
"learning_rate": 0.0002,
"loss": 0.6603,
"step": 2040
},
{
"epoch": 0.94,
"learning_rate": 0.0002,
"loss": 0.6327,
"step": 2050
},
{
"epoch": 0.94,
"learning_rate": 0.0002,
"loss": 0.6378,
"step": 2060
},
{
"epoch": 0.95,
"learning_rate": 0.0002,
"loss": 0.6464,
"step": 2070
},
{
"epoch": 0.95,
"learning_rate": 0.0002,
"loss": 0.6703,
"step": 2080
},
{
"epoch": 0.96,
"learning_rate": 0.0002,
"loss": 0.6605,
"step": 2090
},
{
"epoch": 0.96,
"learning_rate": 0.0002,
"loss": 0.7188,
"step": 2100
},
{
"epoch": 0.97,
"learning_rate": 0.0002,
"loss": 0.5815,
"step": 2110
},
{
"epoch": 0.97,
"learning_rate": 0.0002,
"loss": 0.6385,
"step": 2120
},
{
"epoch": 0.98,
"learning_rate": 0.0002,
"loss": 0.6801,
"step": 2130
},
{
"epoch": 0.98,
"learning_rate": 0.0002,
"loss": 0.6469,
"step": 2140
},
{
"epoch": 0.99,
"learning_rate": 0.0002,
"loss": 0.7189,
"step": 2150
},
{
"epoch": 0.99,
"learning_rate": 0.0002,
"loss": 0.6318,
"step": 2160
},
{
"epoch": 1.0,
"learning_rate": 0.0002,
"loss": 0.6137,
"step": 2170
},
{
"epoch": 1.0,
"learning_rate": 0.0002,
"loss": 0.6902,
"step": 2180
},
{
"epoch": 1.0,
"learning_rate": 0.0002,
"loss": 0.5861,
"step": 2190
},
{
"epoch": 1.01,
"learning_rate": 0.0002,
"loss": 0.5541,
"step": 2200
},
{
"epoch": 1.01,
"eval_loss": 0.6430545449256897,
"eval_runtime": 280.4147,
"eval_samples_per_second": 3.566,
"eval_steps_per_second": 0.892,
"step": 2200
},
{
"epoch": 1.01,
"mmlu_eval_accuracy": 0.4584028242608573,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.3125,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.42105263157894735,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.5882352941176471,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.36470588235294116,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.0568978693093083,
"step": 2200
},
{
"epoch": 1.01,
"learning_rate": 0.0002,
"loss": 0.5721,
"step": 2210
},
{
"epoch": 1.02,
"learning_rate": 0.0002,
"loss": 0.6119,
"step": 2220
},
{
"epoch": 1.02,
"learning_rate": 0.0002,
"loss": 0.5869,
"step": 2230
},
{
"epoch": 1.03,
"learning_rate": 0.0002,
"loss": 0.5941,
"step": 2240
},
{
"epoch": 1.03,
"learning_rate": 0.0002,
"loss": 0.5704,
"step": 2250
},
{
"epoch": 1.04,
"learning_rate": 0.0002,
"loss": 0.5647,
"step": 2260
},
{
"epoch": 1.04,
"learning_rate": 0.0002,
"loss": 0.5847,
"step": 2270
},
{
"epoch": 1.05,
"learning_rate": 0.0002,
"loss": 0.6367,
"step": 2280
},
{
"epoch": 1.05,
"learning_rate": 0.0002,
"loss": 0.6285,
"step": 2290
},
{
"epoch": 1.05,
"learning_rate": 0.0002,
"loss": 0.594,
"step": 2300
},
{
"epoch": 1.06,
"learning_rate": 0.0002,
"loss": 0.5427,
"step": 2310
},
{
"epoch": 1.06,
"learning_rate": 0.0002,
"loss": 0.6049,
"step": 2320
},
{
"epoch": 1.07,
"learning_rate": 0.0002,
"loss": 0.5583,
"step": 2330
},
{
"epoch": 1.07,
"learning_rate": 0.0002,
"loss": 0.682,
"step": 2340
},
{
"epoch": 1.08,
"learning_rate": 0.0002,
"loss": 0.6072,
"step": 2350
},
{
"epoch": 1.08,
"learning_rate": 0.0002,
"loss": 0.5772,
"step": 2360
},
{
"epoch": 1.09,
"learning_rate": 0.0002,
"loss": 0.6005,
"step": 2370
},
{
"epoch": 1.09,
"learning_rate": 0.0002,
"loss": 0.5758,
"step": 2380
},
{
"epoch": 1.1,
"learning_rate": 0.0002,
"loss": 0.6146,
"step": 2390
},
{
"epoch": 1.1,
"learning_rate": 0.0002,
"loss": 0.6002,
"step": 2400
},
{
"epoch": 1.1,
"eval_loss": 0.6426622271537781,
"eval_runtime": 280.2067,
"eval_samples_per_second": 3.569,
"eval_steps_per_second": 0.892,
"step": 2400
},
{
"epoch": 1.1,
"mmlu_eval_accuracy": 0.4610174096166174,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.36363636363636365,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.3125,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.6153846153846154,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.09090909090909091,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.22580645161290322,
"mmlu_eval_accuracy_professional_law": 0.32941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.6666666666666666,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.061111478908255,
"step": 2400
}
],
"max_steps": 5000,
"num_train_epochs": 3,
"total_flos": 6.906576858267894e+17,
"trial_name": null,
"trial_params": null
}