prateeky2806's picture
Training in progress, step 400
5cb063e
{
"best_metric": null,
"best_model_checkpoint": null,
"epoch": 0.18342313424280637,
"global_step": 400,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.0,
"learning_rate": 0.0002,
"loss": 0.7825,
"step": 10
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7565,
"step": 20
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7408,
"step": 30
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7496,
"step": 40
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7424,
"step": 50
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7112,
"step": 60
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7409,
"step": 70
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.7646,
"step": 80
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.7129,
"step": 90
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7671,
"step": 100
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7166,
"step": 110
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.7113,
"step": 120
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.6682,
"step": 130
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.7644,
"step": 140
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.6813,
"step": 150
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.6447,
"step": 160
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.6587,
"step": 170
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.6657,
"step": 180
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.681,
"step": 190
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.7142,
"step": 200
},
{
"epoch": 0.09,
"eval_loss": 0.6789492964744568,
"eval_runtime": 280.115,
"eval_samples_per_second": 3.57,
"eval_steps_per_second": 0.892,
"step": 200
},
{
"epoch": 0.09,
"mmlu_eval_accuracy": 0.4601645000494307,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9642877595465115,
"step": 200
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.6854,
"step": 210
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7256,
"step": 220
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.7505,
"step": 230
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.618,
"step": 240
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.6726,
"step": 250
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.6882,
"step": 260
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.6982,
"step": 270
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.661,
"step": 280
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.699,
"step": 290
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.6867,
"step": 300
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.7127,
"step": 310
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.7141,
"step": 320
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.6483,
"step": 330
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.6532,
"step": 340
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.6474,
"step": 350
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.6728,
"step": 360
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.6736,
"step": 370
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.7164,
"step": 380
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.6844,
"step": 390
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.6797,
"step": 400
},
{
"epoch": 0.18,
"eval_loss": 0.6707000732421875,
"eval_runtime": 280.204,
"eval_samples_per_second": 3.569,
"eval_steps_per_second": 0.892,
"step": 400
},
{
"epoch": 0.18,
"mmlu_eval_accuracy": 0.4521886129310749,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.42105263157894735,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.92568634446545,
"step": 400
}
],
"max_steps": 5000,
"num_train_epochs": 3,
"total_flos": 1.144636170807214e+17,
"trial_name": null,
"trial_params": null
}