|
{ |
|
"best_metric": null, |
|
"best_model_checkpoint": null, |
|
"epoch": 0.2751347013642096, |
|
"global_step": 600, |
|
"is_hyper_param_search": false, |
|
"is_local_process_zero": true, |
|
"is_world_process_zero": true, |
|
"log_history": [ |
|
{ |
|
"epoch": 0.0, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7825, |
|
"step": 10 |
|
}, |
|
{ |
|
"epoch": 0.01, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7565, |
|
"step": 20 |
|
}, |
|
{ |
|
"epoch": 0.01, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7408, |
|
"step": 30 |
|
}, |
|
{ |
|
"epoch": 0.02, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7496, |
|
"step": 40 |
|
}, |
|
{ |
|
"epoch": 0.02, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7424, |
|
"step": 50 |
|
}, |
|
{ |
|
"epoch": 0.03, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7112, |
|
"step": 60 |
|
}, |
|
{ |
|
"epoch": 0.03, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7409, |
|
"step": 70 |
|
}, |
|
{ |
|
"epoch": 0.04, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7646, |
|
"step": 80 |
|
}, |
|
{ |
|
"epoch": 0.04, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7129, |
|
"step": 90 |
|
}, |
|
{ |
|
"epoch": 0.05, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7671, |
|
"step": 100 |
|
}, |
|
{ |
|
"epoch": 0.05, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7166, |
|
"step": 110 |
|
}, |
|
{ |
|
"epoch": 0.06, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7113, |
|
"step": 120 |
|
}, |
|
{ |
|
"epoch": 0.06, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6682, |
|
"step": 130 |
|
}, |
|
{ |
|
"epoch": 0.06, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7644, |
|
"step": 140 |
|
}, |
|
{ |
|
"epoch": 0.07, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6813, |
|
"step": 150 |
|
}, |
|
{ |
|
"epoch": 0.07, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6447, |
|
"step": 160 |
|
}, |
|
{ |
|
"epoch": 0.08, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6587, |
|
"step": 170 |
|
}, |
|
{ |
|
"epoch": 0.08, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6657, |
|
"step": 180 |
|
}, |
|
{ |
|
"epoch": 0.09, |
|
"learning_rate": 0.0002, |
|
"loss": 0.681, |
|
"step": 190 |
|
}, |
|
{ |
|
"epoch": 0.09, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7142, |
|
"step": 200 |
|
}, |
|
{ |
|
"epoch": 0.09, |
|
"eval_loss": 0.6789492964744568, |
|
"eval_runtime": 280.115, |
|
"eval_samples_per_second": 3.57, |
|
"eval_steps_per_second": 0.892, |
|
"step": 200 |
|
}, |
|
{ |
|
"epoch": 0.09, |
|
"mmlu_eval_accuracy": 0.4601645000494307, |
|
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, |
|
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, |
|
"mmlu_eval_accuracy_astronomy": 0.4375, |
|
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, |
|
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, |
|
"mmlu_eval_accuracy_college_biology": 0.4375, |
|
"mmlu_eval_accuracy_college_chemistry": 0.125, |
|
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, |
|
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, |
|
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727, |
|
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, |
|
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, |
|
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, |
|
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, |
|
"mmlu_eval_accuracy_electrical_engineering": 0.375, |
|
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, |
|
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, |
|
"mmlu_eval_accuracy_global_facts": 0.6, |
|
"mmlu_eval_accuracy_high_school_biology": 0.34375, |
|
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, |
|
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, |
|
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, |
|
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, |
|
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, |
|
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, |
|
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, |
|
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, |
|
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, |
|
"mmlu_eval_accuracy_high_school_psychology": 0.75, |
|
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, |
|
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, |
|
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, |
|
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, |
|
"mmlu_eval_accuracy_human_sexuality": 0.5, |
|
"mmlu_eval_accuracy_international_law": 0.7692307692307693, |
|
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, |
|
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, |
|
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, |
|
"mmlu_eval_accuracy_management": 0.5454545454545454, |
|
"mmlu_eval_accuracy_marketing": 0.68, |
|
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, |
|
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, |
|
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, |
|
"mmlu_eval_accuracy_moral_scenarios": 0.24, |
|
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, |
|
"mmlu_eval_accuracy_philosophy": 0.47058823529411764, |
|
"mmlu_eval_accuracy_prehistory": 0.4857142857142857, |
|
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, |
|
"mmlu_eval_accuracy_professional_law": 0.3411764705882353, |
|
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, |
|
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, |
|
"mmlu_eval_accuracy_public_relations": 0.5, |
|
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, |
|
"mmlu_eval_accuracy_sociology": 0.5909090909090909, |
|
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, |
|
"mmlu_eval_accuracy_virology": 0.3888888888888889, |
|
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, |
|
"mmlu_loss": 0.9642877595465115, |
|
"step": 200 |
|
}, |
|
{ |
|
"epoch": 0.1, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6854, |
|
"step": 210 |
|
}, |
|
{ |
|
"epoch": 0.1, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7256, |
|
"step": 220 |
|
}, |
|
{ |
|
"epoch": 0.11, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7505, |
|
"step": 230 |
|
}, |
|
{ |
|
"epoch": 0.11, |
|
"learning_rate": 0.0002, |
|
"loss": 0.618, |
|
"step": 240 |
|
}, |
|
{ |
|
"epoch": 0.11, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6726, |
|
"step": 250 |
|
}, |
|
{ |
|
"epoch": 0.12, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6882, |
|
"step": 260 |
|
}, |
|
{ |
|
"epoch": 0.12, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6982, |
|
"step": 270 |
|
}, |
|
{ |
|
"epoch": 0.13, |
|
"learning_rate": 0.0002, |
|
"loss": 0.661, |
|
"step": 280 |
|
}, |
|
{ |
|
"epoch": 0.13, |
|
"learning_rate": 0.0002, |
|
"loss": 0.699, |
|
"step": 290 |
|
}, |
|
{ |
|
"epoch": 0.14, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6867, |
|
"step": 300 |
|
}, |
|
{ |
|
"epoch": 0.14, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7127, |
|
"step": 310 |
|
}, |
|
{ |
|
"epoch": 0.15, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7141, |
|
"step": 320 |
|
}, |
|
{ |
|
"epoch": 0.15, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6483, |
|
"step": 330 |
|
}, |
|
{ |
|
"epoch": 0.16, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6532, |
|
"step": 340 |
|
}, |
|
{ |
|
"epoch": 0.16, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6474, |
|
"step": 350 |
|
}, |
|
{ |
|
"epoch": 0.17, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6728, |
|
"step": 360 |
|
}, |
|
{ |
|
"epoch": 0.17, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6736, |
|
"step": 370 |
|
}, |
|
{ |
|
"epoch": 0.17, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7164, |
|
"step": 380 |
|
}, |
|
{ |
|
"epoch": 0.18, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6844, |
|
"step": 390 |
|
}, |
|
{ |
|
"epoch": 0.18, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6797, |
|
"step": 400 |
|
}, |
|
{ |
|
"epoch": 0.18, |
|
"eval_loss": 0.6707000732421875, |
|
"eval_runtime": 280.204, |
|
"eval_samples_per_second": 3.569, |
|
"eval_steps_per_second": 0.892, |
|
"step": 400 |
|
}, |
|
{ |
|
"epoch": 0.18, |
|
"mmlu_eval_accuracy": 0.4521886129310749, |
|
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, |
|
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, |
|
"mmlu_eval_accuracy_astronomy": 0.375, |
|
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, |
|
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, |
|
"mmlu_eval_accuracy_college_biology": 0.4375, |
|
"mmlu_eval_accuracy_college_chemistry": 0.0, |
|
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, |
|
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, |
|
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727, |
|
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, |
|
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, |
|
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, |
|
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, |
|
"mmlu_eval_accuracy_electrical_engineering": 0.375, |
|
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, |
|
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715, |
|
"mmlu_eval_accuracy_global_facts": 0.4, |
|
"mmlu_eval_accuracy_high_school_biology": 0.375, |
|
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, |
|
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, |
|
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, |
|
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, |
|
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, |
|
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, |
|
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, |
|
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, |
|
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, |
|
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, |
|
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, |
|
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, |
|
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, |
|
"mmlu_eval_accuracy_human_aging": 0.6521739130434783, |
|
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, |
|
"mmlu_eval_accuracy_international_law": 0.6923076923076923, |
|
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, |
|
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, |
|
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, |
|
"mmlu_eval_accuracy_management": 0.45454545454545453, |
|
"mmlu_eval_accuracy_marketing": 0.76, |
|
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, |
|
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, |
|
"mmlu_eval_accuracy_moral_disputes": 0.42105263157894735, |
|
"mmlu_eval_accuracy_moral_scenarios": 0.24, |
|
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, |
|
"mmlu_eval_accuracy_philosophy": 0.47058823529411764, |
|
"mmlu_eval_accuracy_prehistory": 0.5142857142857142, |
|
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, |
|
"mmlu_eval_accuracy_professional_law": 0.3411764705882353, |
|
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, |
|
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, |
|
"mmlu_eval_accuracy_public_relations": 0.4166666666666667, |
|
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, |
|
"mmlu_eval_accuracy_sociology": 0.6363636363636364, |
|
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, |
|
"mmlu_eval_accuracy_virology": 0.5, |
|
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, |
|
"mmlu_loss": 0.92568634446545, |
|
"step": 400 |
|
}, |
|
{ |
|
"epoch": 0.19, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7059, |
|
"step": 410 |
|
}, |
|
{ |
|
"epoch": 0.19, |
|
"learning_rate": 0.0002, |
|
"loss": 0.79, |
|
"step": 420 |
|
}, |
|
{ |
|
"epoch": 0.2, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7714, |
|
"step": 430 |
|
}, |
|
{ |
|
"epoch": 0.2, |
|
"learning_rate": 0.0002, |
|
"loss": 0.644, |
|
"step": 440 |
|
}, |
|
{ |
|
"epoch": 0.21, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7102, |
|
"step": 450 |
|
}, |
|
{ |
|
"epoch": 0.21, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6229, |
|
"step": 460 |
|
}, |
|
{ |
|
"epoch": 0.22, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6742, |
|
"step": 470 |
|
}, |
|
{ |
|
"epoch": 0.22, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6997, |
|
"step": 480 |
|
}, |
|
{ |
|
"epoch": 0.22, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6598, |
|
"step": 490 |
|
}, |
|
{ |
|
"epoch": 0.23, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7154, |
|
"step": 500 |
|
}, |
|
{ |
|
"epoch": 0.23, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6796, |
|
"step": 510 |
|
}, |
|
{ |
|
"epoch": 0.24, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6769, |
|
"step": 520 |
|
}, |
|
{ |
|
"epoch": 0.24, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6663, |
|
"step": 530 |
|
}, |
|
{ |
|
"epoch": 0.25, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6758, |
|
"step": 540 |
|
}, |
|
{ |
|
"epoch": 0.25, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7022, |
|
"step": 550 |
|
}, |
|
{ |
|
"epoch": 0.26, |
|
"learning_rate": 0.0002, |
|
"loss": 0.706, |
|
"step": 560 |
|
}, |
|
{ |
|
"epoch": 0.26, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7188, |
|
"step": 570 |
|
}, |
|
{ |
|
"epoch": 0.27, |
|
"learning_rate": 0.0002, |
|
"loss": 0.7077, |
|
"step": 580 |
|
}, |
|
{ |
|
"epoch": 0.27, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6352, |
|
"step": 590 |
|
}, |
|
{ |
|
"epoch": 0.28, |
|
"learning_rate": 0.0002, |
|
"loss": 0.6203, |
|
"step": 600 |
|
}, |
|
{ |
|
"epoch": 0.28, |
|
"eval_loss": 0.664973795413971, |
|
"eval_runtime": 280.1433, |
|
"eval_samples_per_second": 3.57, |
|
"eval_steps_per_second": 0.892, |
|
"step": 600 |
|
}, |
|
{ |
|
"epoch": 0.28, |
|
"mmlu_eval_accuracy": 0.44929002048717553, |
|
"mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091, |
|
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, |
|
"mmlu_eval_accuracy_astronomy": 0.375, |
|
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364, |
|
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, |
|
"mmlu_eval_accuracy_college_biology": 0.375, |
|
"mmlu_eval_accuracy_college_chemistry": 0.0, |
|
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, |
|
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, |
|
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365, |
|
"mmlu_eval_accuracy_college_physics": 0.36363636363636365, |
|
"mmlu_eval_accuracy_computer_security": 0.2727272727272727, |
|
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, |
|
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, |
|
"mmlu_eval_accuracy_electrical_engineering": 0.375, |
|
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, |
|
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, |
|
"mmlu_eval_accuracy_global_facts": 0.4, |
|
"mmlu_eval_accuracy_high_school_biology": 0.375, |
|
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, |
|
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, |
|
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, |
|
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, |
|
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, |
|
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, |
|
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, |
|
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, |
|
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, |
|
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, |
|
"mmlu_eval_accuracy_high_school_statistics": 0.21739130434782608, |
|
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, |
|
"mmlu_eval_accuracy_high_school_world_history": 0.5, |
|
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, |
|
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, |
|
"mmlu_eval_accuracy_international_law": 0.6923076923076923, |
|
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, |
|
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, |
|
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, |
|
"mmlu_eval_accuracy_management": 0.5454545454545454, |
|
"mmlu_eval_accuracy_marketing": 0.72, |
|
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, |
|
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907, |
|
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, |
|
"mmlu_eval_accuracy_moral_scenarios": 0.23, |
|
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, |
|
"mmlu_eval_accuracy_philosophy": 0.47058823529411764, |
|
"mmlu_eval_accuracy_prehistory": 0.42857142857142855, |
|
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, |
|
"mmlu_eval_accuracy_professional_law": 0.3588235294117647, |
|
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, |
|
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, |
|
"mmlu_eval_accuracy_public_relations": 0.4166666666666667, |
|
"mmlu_eval_accuracy_security_studies": 0.5555555555555556, |
|
"mmlu_eval_accuracy_sociology": 0.5909090909090909, |
|
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, |
|
"mmlu_eval_accuracy_virology": 0.5, |
|
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, |
|
"mmlu_loss": 0.9583329685985575, |
|
"step": 600 |
|
} |
|
], |
|
"max_steps": 5000, |
|
"num_train_epochs": 3, |
|
"total_flos": 1.7171969273561088e+17, |
|
"trial_name": null, |
|
"trial_params": null |
|
} |
|
|