{ "best_metric": null, "best_model_checkpoint": null, "epoch": 1.5590966410638543, "global_step": 3400, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.0, "learning_rate": 0.0002, "loss": 0.7825, "step": 10 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.7565, "step": 20 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.7408, "step": 30 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.7496, "step": 40 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.7424, "step": 50 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.7112, "step": 60 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.7409, "step": 70 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.7646, "step": 80 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.7129, "step": 90 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.7671, "step": 100 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.7166, "step": 110 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.7113, "step": 120 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.6682, "step": 130 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.7644, "step": 140 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.6813, "step": 150 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.6447, "step": 160 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.6587, "step": 170 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.6657, "step": 180 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.681, "step": 190 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.7142, "step": 200 }, { "epoch": 0.09, "eval_loss": 0.6789492964744568, "eval_runtime": 280.115, "eval_samples_per_second": 3.57, "eval_steps_per_second": 0.892, "step": 200 }, { "epoch": 0.09, "mmlu_eval_accuracy": 0.4601645000494307, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.75, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.68, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3411764705882353, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9642877595465115, "step": 200 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.6854, "step": 210 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.7256, "step": 220 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.7505, "step": 230 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.618, "step": 240 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.6726, "step": 250 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.6882, "step": 260 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.6982, "step": 270 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.661, "step": 280 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.699, "step": 290 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.6867, "step": 300 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.7127, "step": 310 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.7141, "step": 320 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.6483, "step": 330 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.6532, "step": 340 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.6474, "step": 350 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.6728, "step": 360 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.6736, "step": 370 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.7164, "step": 380 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.6844, "step": 390 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.6797, "step": 400 }, { "epoch": 0.18, "eval_loss": 0.6707000732421875, "eval_runtime": 280.204, "eval_samples_per_second": 3.569, "eval_steps_per_second": 0.892, "step": 400 }, { "epoch": 0.18, "mmlu_eval_accuracy": 0.4521886129310749, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.42105263157894735, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3411764705882353, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.92568634446545, "step": 400 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.7059, "step": 410 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.79, "step": 420 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.7714, "step": 430 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.644, "step": 440 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.7102, "step": 450 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.6229, "step": 460 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.6742, "step": 470 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.6997, "step": 480 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.6598, "step": 490 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.7154, "step": 500 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.6796, "step": 510 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.6769, "step": 520 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.6663, "step": 530 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.6758, "step": 540 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.7022, "step": 550 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.706, "step": 560 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.7188, "step": 570 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.7077, "step": 580 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.6352, "step": 590 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.6203, "step": 600 }, { "epoch": 0.28, "eval_loss": 0.664973795413971, "eval_runtime": 280.1433, "eval_samples_per_second": 3.57, "eval_steps_per_second": 0.892, "step": 600 }, { "epoch": 0.28, "mmlu_eval_accuracy": 0.44929002048717553, "mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.21739130434782608, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3588235294117647, "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5555555555555556, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9583329685985575, "step": 600 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.6652, "step": 610 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.6509, "step": 620 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.6722, "step": 630 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.7112, "step": 640 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.6976, "step": 650 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.6842, "step": 660 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.6913, "step": 670 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.6879, "step": 680 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.6684, "step": 690 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.7271, "step": 700 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.6683, "step": 710 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.6531, "step": 720 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.6948, "step": 730 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.68, "step": 740 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.6339, "step": 750 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.602, "step": 760 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.6817, "step": 770 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.6686, "step": 780 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.6869, "step": 790 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.655, "step": 800 }, { "epoch": 0.37, "eval_loss": 0.6593752503395081, "eval_runtime": 280.0748, "eval_samples_per_second": 3.57, "eval_steps_per_second": 0.893, "step": 800 }, { "epoch": 0.37, "mmlu_eval_accuracy": 0.46269190662697585, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.5, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.36363636363636365, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.22, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.22580645161290322, "mmlu_eval_accuracy_professional_law": 0.32941176470588235, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5925925925925926, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.1274755495957856, "step": 800 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.7119, "step": 810 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.6581, "step": 820 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.6475, "step": 830 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.6944, "step": 840 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.6469, "step": 850 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.7231, "step": 860 }, { "epoch": 0.4, "learning_rate": 0.0002, "loss": 0.6182, "step": 870 }, { "epoch": 0.4, "learning_rate": 0.0002, "loss": 0.7032, "step": 880 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.6291, "step": 890 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.6845, "step": 900 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.7016, "step": 910 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.6921, "step": 920 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.6908, "step": 930 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.7402, "step": 940 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.6553, "step": 950 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.6525, "step": 960 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.7003, "step": 970 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.7082, "step": 980 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.6757, "step": 990 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 0.6803, "step": 1000 }, { "epoch": 0.46, "eval_loss": 0.656200647354126, "eval_runtime": 279.9415, "eval_samples_per_second": 3.572, "eval_steps_per_second": 0.893, "step": 1000 }, { "epoch": 0.46, "mmlu_eval_accuracy": 0.46074490234022447, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.5454545454545454, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.5, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, "mmlu_eval_accuracy_high_school_physics": 0.23529411764705882, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.34705882352941175, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5555555555555556, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.016490816680943, "step": 1000 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 0.6489, "step": 1010 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.5919, "step": 1020 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.721, "step": 1030 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.6696, "step": 1040 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.6976, "step": 1050 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 0.6665, "step": 1060 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 0.6343, "step": 1070 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.6133, "step": 1080 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.6259, "step": 1090 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.6446, "step": 1100 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.705, "step": 1110 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.6445, "step": 1120 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.7156, "step": 1130 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.6842, "step": 1140 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.6528, "step": 1150 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.7015, "step": 1160 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.679, "step": 1170 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.6509, "step": 1180 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.6369, "step": 1190 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.6512, "step": 1200 }, { "epoch": 0.55, "eval_loss": 0.6535513997077942, "eval_runtime": 279.9064, "eval_samples_per_second": 3.573, "eval_steps_per_second": 0.893, "step": 1200 }, { "epoch": 0.55, "mmlu_eval_accuracy": 0.4563086650055728, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.5, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.3684210526315789, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.34705882352941175, "mmlu_eval_accuracy_professional_medicine": 0.4838709677419355, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5555555555555556, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.0143195821006366, "step": 1200 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.6658, "step": 1210 }, { "epoch": 0.56, "learning_rate": 0.0002, "loss": 0.7283, "step": 1220 }, { "epoch": 0.56, "learning_rate": 0.0002, "loss": 0.6944, "step": 1230 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 0.6326, "step": 1240 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 0.6574, "step": 1250 }, { "epoch": 0.58, "learning_rate": 0.0002, "loss": 0.6239, "step": 1260 }, { "epoch": 0.58, "learning_rate": 0.0002, "loss": 0.7219, "step": 1270 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 0.6704, "step": 1280 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 0.6708, "step": 1290 }, { "epoch": 0.6, "learning_rate": 0.0002, "loss": 0.6862, "step": 1300 }, { "epoch": 0.6, "learning_rate": 0.0002, "loss": 0.6771, "step": 1310 }, { "epoch": 0.61, "learning_rate": 0.0002, "loss": 0.661, "step": 1320 }, { "epoch": 0.61, "learning_rate": 0.0002, "loss": 0.6742, "step": 1330 }, { "epoch": 0.61, "learning_rate": 0.0002, "loss": 0.6734, "step": 1340 }, { "epoch": 0.62, "learning_rate": 0.0002, "loss": 0.6798, "step": 1350 }, { "epoch": 0.62, "learning_rate": 0.0002, "loss": 0.6152, "step": 1360 }, { "epoch": 0.63, "learning_rate": 0.0002, "loss": 0.671, "step": 1370 }, { "epoch": 0.63, "learning_rate": 0.0002, "loss": 0.7562, "step": 1380 }, { "epoch": 0.64, "learning_rate": 0.0002, "loss": 0.7571, "step": 1390 }, { "epoch": 0.64, "learning_rate": 0.0002, "loss": 0.6926, "step": 1400 }, { "epoch": 0.64, "eval_loss": 0.6509103178977966, "eval_runtime": 280.3444, "eval_samples_per_second": 3.567, "eval_steps_per_second": 0.892, "step": 1400 }, { "epoch": 0.64, "mmlu_eval_accuracy": 0.4563542680952826, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.42105263157894735, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3411764705882353, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.092854514290085, "step": 1400 }, { "epoch": 0.65, "learning_rate": 0.0002, "loss": 0.6375, "step": 1410 }, { "epoch": 0.65, "learning_rate": 0.0002, "loss": 0.6123, "step": 1420 }, { "epoch": 0.66, "learning_rate": 0.0002, "loss": 0.6628, "step": 1430 }, { "epoch": 0.66, "learning_rate": 0.0002, "loss": 0.7702, "step": 1440 }, { "epoch": 0.66, "learning_rate": 0.0002, "loss": 0.7076, "step": 1450 }, { "epoch": 0.67, "learning_rate": 0.0002, "loss": 0.704, "step": 1460 }, { "epoch": 0.67, "learning_rate": 0.0002, "loss": 0.6406, "step": 1470 }, { "epoch": 0.68, "learning_rate": 0.0002, "loss": 0.669, "step": 1480 }, { "epoch": 0.68, "learning_rate": 0.0002, "loss": 0.6253, "step": 1490 }, { "epoch": 0.69, "learning_rate": 0.0002, "loss": 0.6544, "step": 1500 }, { "epoch": 0.69, "learning_rate": 0.0002, "loss": 0.6018, "step": 1510 }, { "epoch": 0.7, "learning_rate": 0.0002, "loss": 0.6673, "step": 1520 }, { "epoch": 0.7, "learning_rate": 0.0002, "loss": 0.705, "step": 1530 }, { "epoch": 0.71, "learning_rate": 0.0002, "loss": 0.6875, "step": 1540 }, { "epoch": 0.71, "learning_rate": 0.0002, "loss": 0.6864, "step": 1550 }, { "epoch": 0.72, "learning_rate": 0.0002, "loss": 0.6465, "step": 1560 }, { "epoch": 0.72, "learning_rate": 0.0002, "loss": 0.6714, "step": 1570 }, { "epoch": 0.72, "learning_rate": 0.0002, "loss": 0.627, "step": 1580 }, { "epoch": 0.73, "learning_rate": 0.0002, "loss": 0.5958, "step": 1590 }, { "epoch": 0.73, "learning_rate": 0.0002, "loss": 0.62, "step": 1600 }, { "epoch": 0.73, "eval_loss": 0.6470592617988586, "eval_runtime": 280.3872, "eval_samples_per_second": 3.566, "eval_steps_per_second": 0.892, "step": 1600 }, { "epoch": 0.73, "mmlu_eval_accuracy": 0.448089860540604, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.3125, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.84, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.3411764705882353, "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 0.9696583512090827, "step": 1600 }, { "epoch": 0.74, "learning_rate": 0.0002, "loss": 0.722, "step": 1610 }, { "epoch": 0.74, "learning_rate": 0.0002, "loss": 0.6225, "step": 1620 }, { "epoch": 0.75, "learning_rate": 0.0002, "loss": 0.7043, "step": 1630 }, { "epoch": 0.75, "learning_rate": 0.0002, "loss": 0.6671, "step": 1640 }, { "epoch": 0.76, "learning_rate": 0.0002, "loss": 0.6424, "step": 1650 }, { "epoch": 0.76, "learning_rate": 0.0002, "loss": 0.641, "step": 1660 }, { "epoch": 0.77, "learning_rate": 0.0002, "loss": 0.6494, "step": 1670 }, { "epoch": 0.77, "learning_rate": 0.0002, "loss": 0.6845, "step": 1680 }, { "epoch": 0.77, "learning_rate": 0.0002, "loss": 0.6646, "step": 1690 }, { "epoch": 0.78, "learning_rate": 0.0002, "loss": 0.6706, "step": 1700 }, { "epoch": 0.78, "learning_rate": 0.0002, "loss": 0.6993, "step": 1710 }, { "epoch": 0.79, "learning_rate": 0.0002, "loss": 0.6672, "step": 1720 }, { "epoch": 0.79, "learning_rate": 0.0002, "loss": 0.6114, "step": 1730 }, { "epoch": 0.8, "learning_rate": 0.0002, "loss": 0.7194, "step": 1740 }, { "epoch": 0.8, "learning_rate": 0.0002, "loss": 0.6669, "step": 1750 }, { "epoch": 0.81, "learning_rate": 0.0002, "loss": 0.6482, "step": 1760 }, { "epoch": 0.81, "learning_rate": 0.0002, "loss": 0.681, "step": 1770 }, { "epoch": 0.82, "learning_rate": 0.0002, "loss": 0.718, "step": 1780 }, { "epoch": 0.82, "learning_rate": 0.0002, "loss": 0.6948, "step": 1790 }, { "epoch": 0.83, "learning_rate": 0.0002, "loss": 0.6835, "step": 1800 }, { "epoch": 0.83, "eval_loss": 0.6446049809455872, "eval_runtime": 280.3145, "eval_samples_per_second": 3.567, "eval_steps_per_second": 0.892, "step": 1800 }, { "epoch": 0.83, "mmlu_eval_accuracy": 0.45510585655253843, "mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.5, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.5625, "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.3448275862068966, "mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7, "mmlu_eval_accuracy_high_school_statistics": 0.21739130434782608, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.84, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.3235294117647059, "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7894736842105263, "mmlu_loss": 0.9942787007936921, "step": 1800 }, { "epoch": 0.83, "learning_rate": 0.0002, "loss": 0.7031, "step": 1810 }, { "epoch": 0.83, "learning_rate": 0.0002, "loss": 0.6805, "step": 1820 }, { "epoch": 0.84, "learning_rate": 0.0002, "loss": 0.6863, "step": 1830 }, { "epoch": 0.84, "learning_rate": 0.0002, "loss": 0.6567, "step": 1840 }, { "epoch": 0.85, "learning_rate": 0.0002, "loss": 0.6927, "step": 1850 }, { "epoch": 0.85, "learning_rate": 0.0002, "loss": 0.6175, "step": 1860 }, { "epoch": 0.86, "learning_rate": 0.0002, "loss": 0.6129, "step": 1870 }, { "epoch": 0.86, "learning_rate": 0.0002, "loss": 0.6336, "step": 1880 }, { "epoch": 0.87, "learning_rate": 0.0002, "loss": 0.6401, "step": 1890 }, { "epoch": 0.87, "learning_rate": 0.0002, "loss": 0.7285, "step": 1900 }, { "epoch": 0.88, "learning_rate": 0.0002, "loss": 0.6415, "step": 1910 }, { "epoch": 0.88, "learning_rate": 0.0002, "loss": 0.6468, "step": 1920 }, { "epoch": 0.89, "learning_rate": 0.0002, "loss": 0.6636, "step": 1930 }, { "epoch": 0.89, "learning_rate": 0.0002, "loss": 0.6919, "step": 1940 }, { "epoch": 0.89, "learning_rate": 0.0002, "loss": 0.6298, "step": 1950 }, { "epoch": 0.9, "learning_rate": 0.0002, "loss": 0.6582, "step": 1960 }, { "epoch": 0.9, "learning_rate": 0.0002, "loss": 0.6691, "step": 1970 }, { "epoch": 0.91, "learning_rate": 0.0002, "loss": 0.6143, "step": 1980 }, { "epoch": 0.91, "learning_rate": 0.0002, "loss": 0.669, "step": 1990 }, { "epoch": 0.92, "learning_rate": 0.0002, "loss": 0.6456, "step": 2000 }, { "epoch": 0.92, "eval_loss": 0.6425969004631042, "eval_runtime": 280.0301, "eval_samples_per_second": 3.571, "eval_steps_per_second": 0.893, "step": 2000 }, { "epoch": 0.92, "mmlu_eval_accuracy": 0.46047223663644893, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3588235294117647, "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.3333333333333333, "mmlu_eval_accuracy_security_studies": 0.5925925925925926, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.0820855114696541, "step": 2000 }, { "epoch": 0.92, "learning_rate": 0.0002, "loss": 0.6321, "step": 2010 }, { "epoch": 0.93, "learning_rate": 0.0002, "loss": 0.6499, "step": 2020 }, { "epoch": 0.93, "learning_rate": 0.0002, "loss": 0.6446, "step": 2030 }, { "epoch": 0.94, "learning_rate": 0.0002, "loss": 0.6603, "step": 2040 }, { "epoch": 0.94, "learning_rate": 0.0002, "loss": 0.6327, "step": 2050 }, { "epoch": 0.94, "learning_rate": 0.0002, "loss": 0.6378, "step": 2060 }, { "epoch": 0.95, "learning_rate": 0.0002, "loss": 0.6464, "step": 2070 }, { "epoch": 0.95, "learning_rate": 0.0002, "loss": 0.6703, "step": 2080 }, { "epoch": 0.96, "learning_rate": 0.0002, "loss": 0.6605, "step": 2090 }, { "epoch": 0.96, "learning_rate": 0.0002, "loss": 0.7188, "step": 2100 }, { "epoch": 0.97, "learning_rate": 0.0002, "loss": 0.5815, "step": 2110 }, { "epoch": 0.97, "learning_rate": 0.0002, "loss": 0.6385, "step": 2120 }, { "epoch": 0.98, "learning_rate": 0.0002, "loss": 0.6801, "step": 2130 }, { "epoch": 0.98, "learning_rate": 0.0002, "loss": 0.6469, "step": 2140 }, { "epoch": 0.99, "learning_rate": 0.0002, "loss": 0.7189, "step": 2150 }, { "epoch": 0.99, "learning_rate": 0.0002, "loss": 0.6318, "step": 2160 }, { "epoch": 1.0, "learning_rate": 0.0002, "loss": 0.6137, "step": 2170 }, { "epoch": 1.0, "learning_rate": 0.0002, "loss": 0.6902, "step": 2180 }, { "epoch": 1.0, "learning_rate": 0.0002, "loss": 0.5861, "step": 2190 }, { "epoch": 1.01, "learning_rate": 0.0002, "loss": 0.5541, "step": 2200 }, { "epoch": 1.01, "eval_loss": 0.6430545449256897, "eval_runtime": 280.4147, "eval_samples_per_second": 3.566, "eval_steps_per_second": 0.892, "step": 2200 }, { "epoch": 1.01, "mmlu_eval_accuracy": 0.4584028242608573, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.3125, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.5, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.42105263157894735, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.5882352941176471, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.36470588235294116, "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5555555555555556, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.0568978693093083, "step": 2200 }, { "epoch": 1.01, "learning_rate": 0.0002, "loss": 0.5721, "step": 2210 }, { "epoch": 1.02, "learning_rate": 0.0002, "loss": 0.6119, "step": 2220 }, { "epoch": 1.02, "learning_rate": 0.0002, "loss": 0.5869, "step": 2230 }, { "epoch": 1.03, "learning_rate": 0.0002, "loss": 0.5941, "step": 2240 }, { "epoch": 1.03, "learning_rate": 0.0002, "loss": 0.5704, "step": 2250 }, { "epoch": 1.04, "learning_rate": 0.0002, "loss": 0.5647, "step": 2260 }, { "epoch": 1.04, "learning_rate": 0.0002, "loss": 0.5847, "step": 2270 }, { "epoch": 1.05, "learning_rate": 0.0002, "loss": 0.6367, "step": 2280 }, { "epoch": 1.05, "learning_rate": 0.0002, "loss": 0.6285, "step": 2290 }, { "epoch": 1.05, "learning_rate": 0.0002, "loss": 0.594, "step": 2300 }, { "epoch": 1.06, "learning_rate": 0.0002, "loss": 0.5427, "step": 2310 }, { "epoch": 1.06, "learning_rate": 0.0002, "loss": 0.6049, "step": 2320 }, { "epoch": 1.07, "learning_rate": 0.0002, "loss": 0.5583, "step": 2330 }, { "epoch": 1.07, "learning_rate": 0.0002, "loss": 0.682, "step": 2340 }, { "epoch": 1.08, "learning_rate": 0.0002, "loss": 0.6072, "step": 2350 }, { "epoch": 1.08, "learning_rate": 0.0002, "loss": 0.5772, "step": 2360 }, { "epoch": 1.09, "learning_rate": 0.0002, "loss": 0.6005, "step": 2370 }, { "epoch": 1.09, "learning_rate": 0.0002, "loss": 0.5758, "step": 2380 }, { "epoch": 1.1, "learning_rate": 0.0002, "loss": 0.6146, "step": 2390 }, { "epoch": 1.1, "learning_rate": 0.0002, "loss": 0.6002, "step": 2400 }, { "epoch": 1.1, "eval_loss": 0.6426622271537781, "eval_runtime": 280.2067, "eval_samples_per_second": 3.569, "eval_steps_per_second": 0.892, "step": 2400 }, { "epoch": 1.1, "mmlu_eval_accuracy": 0.4610174096166174, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.36363636363636365, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.3125, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.6153846153846154, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.09090909090909091, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.22580645161290322, "mmlu_eval_accuracy_professional_law": 0.32941176470588235, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.6666666666666666, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.061111478908255, "step": 2400 }, { "epoch": 1.11, "learning_rate": 0.0002, "loss": 0.5792, "step": 2410 }, { "epoch": 1.11, "learning_rate": 0.0002, "loss": 0.6418, "step": 2420 }, { "epoch": 1.11, "learning_rate": 0.0002, "loss": 0.6299, "step": 2430 }, { "epoch": 1.12, "learning_rate": 0.0002, "loss": 0.5279, "step": 2440 }, { "epoch": 1.12, "learning_rate": 0.0002, "loss": 0.6398, "step": 2450 }, { "epoch": 1.13, "learning_rate": 0.0002, "loss": 0.5968, "step": 2460 }, { "epoch": 1.13, "learning_rate": 0.0002, "loss": 0.5695, "step": 2470 }, { "epoch": 1.14, "learning_rate": 0.0002, "loss": 0.6187, "step": 2480 }, { "epoch": 1.14, "learning_rate": 0.0002, "loss": 0.5437, "step": 2490 }, { "epoch": 1.15, "learning_rate": 0.0002, "loss": 0.5727, "step": 2500 }, { "epoch": 1.15, "learning_rate": 0.0002, "loss": 0.4753, "step": 2510 }, { "epoch": 1.16, "learning_rate": 0.0002, "loss": 0.6232, "step": 2520 }, { "epoch": 1.16, "learning_rate": 0.0002, "loss": 0.633, "step": 2530 }, { "epoch": 1.16, "learning_rate": 0.0002, "loss": 0.5956, "step": 2540 }, { "epoch": 1.17, "learning_rate": 0.0002, "loss": 0.6124, "step": 2550 }, { "epoch": 1.17, "learning_rate": 0.0002, "loss": 0.6181, "step": 2560 }, { "epoch": 1.18, "learning_rate": 0.0002, "loss": 0.6387, "step": 2570 }, { "epoch": 1.18, "learning_rate": 0.0002, "loss": 0.6155, "step": 2580 }, { "epoch": 1.19, "learning_rate": 0.0002, "loss": 0.6258, "step": 2590 }, { "epoch": 1.19, "learning_rate": 0.0002, "loss": 0.6032, "step": 2600 }, { "epoch": 1.19, "eval_loss": 0.6423451900482178, "eval_runtime": 280.312, "eval_samples_per_second": 3.567, "eval_steps_per_second": 0.892, "step": 2600 }, { "epoch": 1.19, "mmlu_eval_accuracy": 0.4612227123416292, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.36363636363636365, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.3125, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.23529411764705882, "mmlu_eval_accuracy_high_school_psychology": 0.75, "mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.09090909090909091, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.5588235294117647, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.34705882352941175, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.6666666666666666, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.2192327713219366, "step": 2600 }, { "epoch": 1.2, "learning_rate": 0.0002, "loss": 0.5307, "step": 2610 }, { "epoch": 1.2, "learning_rate": 0.0002, "loss": 0.5679, "step": 2620 }, { "epoch": 1.21, "learning_rate": 0.0002, "loss": 0.5164, "step": 2630 }, { "epoch": 1.21, "learning_rate": 0.0002, "loss": 0.5856, "step": 2640 }, { "epoch": 1.22, "learning_rate": 0.0002, "loss": 0.5929, "step": 2650 }, { "epoch": 1.22, "learning_rate": 0.0002, "loss": 0.5641, "step": 2660 }, { "epoch": 1.22, "learning_rate": 0.0002, "loss": 0.6469, "step": 2670 }, { "epoch": 1.23, "learning_rate": 0.0002, "loss": 0.6327, "step": 2680 }, { "epoch": 1.23, "learning_rate": 0.0002, "loss": 0.5856, "step": 2690 }, { "epoch": 1.24, "learning_rate": 0.0002, "loss": 0.6145, "step": 2700 }, { "epoch": 1.24, "learning_rate": 0.0002, "loss": 0.6283, "step": 2710 }, { "epoch": 1.25, "learning_rate": 0.0002, "loss": 0.6128, "step": 2720 }, { "epoch": 1.25, "learning_rate": 0.0002, "loss": 0.6376, "step": 2730 }, { "epoch": 1.26, "learning_rate": 0.0002, "loss": 0.6523, "step": 2740 }, { "epoch": 1.26, "learning_rate": 0.0002, "loss": 0.6183, "step": 2750 }, { "epoch": 1.27, "learning_rate": 0.0002, "loss": 0.5849, "step": 2760 }, { "epoch": 1.27, "learning_rate": 0.0002, "loss": 0.5918, "step": 2770 }, { "epoch": 1.27, "learning_rate": 0.0002, "loss": 0.5817, "step": 2780 }, { "epoch": 1.28, "learning_rate": 0.0002, "loss": 0.5914, "step": 2790 }, { "epoch": 1.28, "learning_rate": 0.0002, "loss": 0.6112, "step": 2800 }, { "epoch": 1.28, "eval_loss": 0.6401032209396362, "eval_runtime": 280.2076, "eval_samples_per_second": 3.569, "eval_steps_per_second": 0.892, "step": 2800 }, { "epoch": 1.28, "mmlu_eval_accuracy": 0.4665971182546491, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.3125, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.5588235294117647, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.3235294117647059, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.36231884057971014, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.120126581145329, "step": 2800 }, { "epoch": 1.29, "learning_rate": 0.0002, "loss": 0.5801, "step": 2810 }, { "epoch": 1.29, "learning_rate": 0.0002, "loss": 0.6049, "step": 2820 }, { "epoch": 1.3, "learning_rate": 0.0002, "loss": 0.5906, "step": 2830 }, { "epoch": 1.3, "learning_rate": 0.0002, "loss": 0.5249, "step": 2840 }, { "epoch": 1.31, "learning_rate": 0.0002, "loss": 0.5618, "step": 2850 }, { "epoch": 1.31, "learning_rate": 0.0002, "loss": 0.6156, "step": 2860 }, { "epoch": 1.32, "learning_rate": 0.0002, "loss": 0.653, "step": 2870 }, { "epoch": 1.32, "learning_rate": 0.0002, "loss": 0.6135, "step": 2880 }, { "epoch": 1.33, "learning_rate": 0.0002, "loss": 0.5768, "step": 2890 }, { "epoch": 1.33, "learning_rate": 0.0002, "loss": 0.6161, "step": 2900 }, { "epoch": 1.33, "learning_rate": 0.0002, "loss": 0.5605, "step": 2910 }, { "epoch": 1.34, "learning_rate": 0.0002, "loss": 0.6134, "step": 2920 }, { "epoch": 1.34, "learning_rate": 0.0002, "loss": 0.5716, "step": 2930 }, { "epoch": 1.35, "learning_rate": 0.0002, "loss": 0.5686, "step": 2940 }, { "epoch": 1.35, "learning_rate": 0.0002, "loss": 0.5698, "step": 2950 }, { "epoch": 1.36, "learning_rate": 0.0002, "loss": 0.645, "step": 2960 }, { "epoch": 1.36, "learning_rate": 0.0002, "loss": 0.6123, "step": 2970 }, { "epoch": 1.37, "learning_rate": 0.0002, "loss": 0.5724, "step": 2980 }, { "epoch": 1.37, "learning_rate": 0.0002, "loss": 0.6046, "step": 2990 }, { "epoch": 1.38, "learning_rate": 0.0002, "loss": 0.5736, "step": 3000 }, { "epoch": 1.38, "eval_loss": 0.6404744386672974, "eval_runtime": 280.4678, "eval_samples_per_second": 3.565, "eval_steps_per_second": 0.891, "step": 3000 }, { "epoch": 1.38, "mmlu_eval_accuracy": 0.46822206401347793, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.5, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069, "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, "mmlu_eval_accuracy_high_school_physics": 0.23529411764705882, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.09090909090909091, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.84, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.22580645161290322, "mmlu_eval_accuracy_professional_law": 0.3352941176470588, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.6666666666666666, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.0331950397777807, "step": 3000 }, { "epoch": 1.38, "learning_rate": 0.0002, "loss": 0.6236, "step": 3010 }, { "epoch": 1.38, "learning_rate": 0.0002, "loss": 0.6147, "step": 3020 }, { "epoch": 1.39, "learning_rate": 0.0002, "loss": 0.6701, "step": 3030 }, { "epoch": 1.39, "learning_rate": 0.0002, "loss": 0.6524, "step": 3040 }, { "epoch": 1.4, "learning_rate": 0.0002, "loss": 0.6458, "step": 3050 }, { "epoch": 1.4, "learning_rate": 0.0002, "loss": 0.6275, "step": 3060 }, { "epoch": 1.41, "learning_rate": 0.0002, "loss": 0.5743, "step": 3070 }, { "epoch": 1.41, "learning_rate": 0.0002, "loss": 0.6244, "step": 3080 }, { "epoch": 1.42, "learning_rate": 0.0002, "loss": 0.6304, "step": 3090 }, { "epoch": 1.42, "learning_rate": 0.0002, "loss": 0.5913, "step": 3100 }, { "epoch": 1.43, "learning_rate": 0.0002, "loss": 0.5761, "step": 3110 }, { "epoch": 1.43, "learning_rate": 0.0002, "loss": 0.5795, "step": 3120 }, { "epoch": 1.44, "learning_rate": 0.0002, "loss": 0.6633, "step": 3130 }, { "epoch": 1.44, "learning_rate": 0.0002, "loss": 0.5692, "step": 3140 }, { "epoch": 1.44, "learning_rate": 0.0002, "loss": 0.6453, "step": 3150 }, { "epoch": 1.45, "learning_rate": 0.0002, "loss": 0.6315, "step": 3160 }, { "epoch": 1.45, "learning_rate": 0.0002, "loss": 0.6175, "step": 3170 }, { "epoch": 1.46, "learning_rate": 0.0002, "loss": 0.6131, "step": 3180 }, { "epoch": 1.46, "learning_rate": 0.0002, "loss": 0.5926, "step": 3190 }, { "epoch": 1.47, "learning_rate": 0.0002, "loss": 0.5722, "step": 3200 }, { "epoch": 1.47, "eval_loss": 0.6387373208999634, "eval_runtime": 280.1311, "eval_samples_per_second": 3.57, "eval_steps_per_second": 0.892, "step": 3200 }, { "epoch": 1.47, "mmlu_eval_accuracy": 0.46230841034551773, "mmlu_eval_accuracy_abstract_algebra": 0.45454545454545453, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.5, "mmlu_eval_accuracy_business_ethics": 0.36363636363636365, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.3125, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.4375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.6363636363636364, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4186046511627907, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.5833333333333334, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.48484848484848486, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.16129032258064516, "mmlu_eval_accuracy_professional_law": 0.32941176470588235, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5925925925925926, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.6111111111111112, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.1042568252541067, "step": 3200 }, { "epoch": 1.47, "learning_rate": 0.0002, "loss": 0.5951, "step": 3210 }, { "epoch": 1.48, "learning_rate": 0.0002, "loss": 0.6278, "step": 3220 }, { "epoch": 1.48, "learning_rate": 0.0002, "loss": 0.5928, "step": 3230 }, { "epoch": 1.49, "learning_rate": 0.0002, "loss": 0.5846, "step": 3240 }, { "epoch": 1.49, "learning_rate": 0.0002, "loss": 0.5802, "step": 3250 }, { "epoch": 1.49, "learning_rate": 0.0002, "loss": 0.6263, "step": 3260 }, { "epoch": 1.5, "learning_rate": 0.0002, "loss": 0.5526, "step": 3270 }, { "epoch": 1.5, "learning_rate": 0.0002, "loss": 0.6047, "step": 3280 }, { "epoch": 1.51, "learning_rate": 0.0002, "loss": 0.5702, "step": 3290 }, { "epoch": 1.51, "learning_rate": 0.0002, "loss": 0.633, "step": 3300 }, { "epoch": 1.52, "learning_rate": 0.0002, "loss": 0.6392, "step": 3310 }, { "epoch": 1.52, "learning_rate": 0.0002, "loss": 0.6377, "step": 3320 }, { "epoch": 1.53, "learning_rate": 0.0002, "loss": 0.6587, "step": 3330 }, { "epoch": 1.53, "learning_rate": 0.0002, "loss": 0.6079, "step": 3340 }, { "epoch": 1.54, "learning_rate": 0.0002, "loss": 0.576, "step": 3350 }, { "epoch": 1.54, "learning_rate": 0.0002, "loss": 0.6235, "step": 3360 }, { "epoch": 1.55, "learning_rate": 0.0002, "loss": 0.5736, "step": 3370 }, { "epoch": 1.55, "learning_rate": 0.0002, "loss": 0.5757, "step": 3380 }, { "epoch": 1.55, "learning_rate": 0.0002, "loss": 0.6272, "step": 3390 }, { "epoch": 1.56, "learning_rate": 0.0002, "loss": 0.6357, "step": 3400 }, { "epoch": 1.56, "eval_loss": 0.6362296342849731, "eval_runtime": 280.2373, "eval_samples_per_second": 3.568, "eval_steps_per_second": 0.892, "step": 3400 }, { "epoch": 1.56, "mmlu_eval_accuracy": 0.4647485055195569, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.5, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.5, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.6363636363636364, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.75, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.22580645161290322, "mmlu_eval_accuracy_professional_law": 0.32941176470588235, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5925925925925926, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.6111111111111112, "mmlu_eval_accuracy_world_religions": 0.7894736842105263, "mmlu_loss": 1.1746269385901817, "step": 3400 } ], "max_steps": 5000, "num_train_epochs": 3, "total_flos": 9.748934432369787e+17, "trial_name": null, "trial_params": null }