File size: 20,194 Bytes
780c589 df8cf63 780c589 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
###########################################################################
# Computer vision - Embedded person tracking demo software by HyperbeeAI. #
# Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected] #
###########################################################################
import os, sys, random, torch, torchvision
from torchvision import transforms
from torchvision.datasets.vision import VisionDataset
import torchvision.ops as ops
import torch.utils.data
import numpy as np
import pandas as pd
import copy
from PIL import Image
import os.path
import time, json
from typing import Any, Callable, Optional, Tuple, List
from typing import Callable
class input_fxpt_normalize:
def __init__(self, act_8b_mode):
self.act_8b_mode = act_8b_mode
def __call__(self, img):
if(self.act_8b_mode):
return img.sub(0.5).mul(256.).round().clamp(min=-128, max=127)
return img.sub(0.5).mul(256.).round().clamp(min=-128, max=127).div(128.)
### Emre Can: Our COCO Dataloder for training classes at specific ratio in every batch.
def class_lookup(cls):
c = list(cls.__bases__)
for base in c:
c.extend(class_lookup(base))
return c
# ref: https://pytorch.org/vision/main/_modules/torchvision/datasets/coco.html
class CocoDetection(VisionDataset):
"""`MS Coco Detection <https://cocodataset.org/#detection-2016>`_ Dataset.
Args:
root (string): Root directory where images are downloaded to.
annFile (string): Path to json annotation file.
scaleImgforCrop (int, optional): Img and target BBs are scaled with
constant aspect ratio st:
if image width, image height > scaleImgforCrop image is shrinked
until width or height becomes equal to scaleImgforCrop
if image width, image height < scaleImgforCrop image is expanded
until width or height becomes equal to scaleImgforCrop
else no scaling
fit_full_img: If it is set to true, image is scaled t fully fit in the window specified by "scaleImgforCrop x scaleImgforCrop"
transform (callable, optional): A function/transform that takes in an
PIL image and returns a transformed version. E.g, ``transforms.ToTensor``
target_transform (callable, optional): A function/transform that takes in
the target and transforms it.
transforms (callable, optional): A function/transform that takes input
sample and its target as entry and returns a transformed version.
"""
def __init__(
self,
root: str,
annFile: str,
scaleImgforCrop: int= None,
fit_full_img = False,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
transforms: Optional[Callable] = None
):
super().__init__(root, transforms, transform, target_transform)
from pycocotools.coco import COCO
self.coco = COCO(annFile)
self.ids = list(sorted(self.coco.imgs.keys()))
self.annFilePath = os.path.join('.',annFile)
self.catPersonId = self.coco.getCatIds(catNms=['person'])[0]
self.scaleImgforCrop = scaleImgforCrop
self.fit_full_img = fit_full_img
def _load_image(self, id: int) -> Image.Image:
path = self.coco.loadImgs(id)[0]["file_name"]
return Image.open(os.path.join(self.root, path)).convert("RGB")
def _load_target(self, id) -> List[Any]:
return self.coco.loadAnns(self.coco.getAnnIds(id, iscrowd=False))
def __getitem__(self, index: int) -> Tuple[Any, Any, Any]:
id = self.ids[index]
imgID = id
try:
image = self._load_image(id)
except:
print(f'********Unable to load image with id: {imgID}********')
print('Please check if image is corrupted, and remove it from annotations if necessary.')
target = copy.deepcopy(self._load_target(id)) # deepcopy target list beforecentercrop manip, to be abe to work with same
# dateset without reloading it
image_width = image.size[0]
image_height = image.size[1]
# If necesary rescale the image and BBs near the size of planned center crop as much as possible
scale = self._calcPrescale(image_width=image_width, image_height=image_height)
image = self._prescaleImage(image, scale)
for i, t in enumerate(target):
BB = t['bbox'].copy()
scaledBB = self._prescaleBB(BB,scale)
target[i]['bbox'] = scaledBB
# Image width height after prescaling
image_width = image.size[0]
image_height = image.size[1]
# Check if center crop applied
centerCropped = False
if self.transforms is not None:
image, target = self.transforms(image, target)
# If center crop applied, transform BBs as well
for t in self.transforms.transform.transforms:
if (type(t) == torchvision.transforms.transforms.CenterCrop):
centerCropped = True
x_scale = image.size(2) / image_width
y_scale = image.size(1) / image_height
bbox_arr = []
for idx,ann in enumerate(target):
if ann['category_id'] == self.catPersonId:
crop_size = image.shape[1]
if centerCropped:
bbox = ann['bbox'].copy()
croppedBB = self.cropBBox(bbox, crop_size,image_height,image_width)
else:
croppedBB = torch.tensor(ann['bbox'])
if not (croppedBB == None):
bbox_arr.append(croppedBB)
if len(bbox_arr) != 0:
bbox_arr = torch.stack(bbox_arr)
wh = bbox_arr[:, 2:]
xy = bbox_arr[:, :2]
id_tensor = torch.tensor([id]).unsqueeze(0).expand(bbox_arr.size(0), -1)
bbox_arr = torch.cat([id_tensor, xy, wh], dim=-1)
else:
bbox_arr = torch.tensor(bbox_arr)
return image, bbox_arr , imgID
def __len__(self) -> int:
return len(self.ids)
def get_labels(self):
labels = []
for id in self.ids:
anns = self._load_target(id)
person_flag = False
for ann in anns:
person_flag = ann['category_id'] == self.catPersonId
if person_flag == True:
break
if person_flag == True:
labels.append(1)
else:
labels.append(0)
return torch.tensor(labels)
def get_cat_person_id(self):
return self.catPersonId
def get_coco_api(self):
return self.coco
# Functions defined for prescaling images/targets before center crop operation
def _calcPrescale(self, image_width, image_height):
# Calculate scale factor to shrink/expand image to coincide width or height to croppig area
scale = 1.0
if self.scaleImgforCrop != None:
if self.fit_full_img:
max_size = max(image_width, image_height)
scale = max_size/self.scaleImgforCrop
else:
# image fully encapsulates cropping area or vice versa
if ((image_width-self.scaleImgforCrop)*(image_height-self.scaleImgforCrop) > 0):
# if width of original image is closer to crop area
if abs(1-image_width/self.scaleImgforCrop) < abs(1-image_height/self.scaleImgforCrop):
scale = image_width/self.scaleImgforCrop
else:
scale = image_height/self.scaleImgforCrop
return scale
# Scales the image with defined scale
def _prescaleImage(self, image, scale):
image_width = int(image.size[0]/scale)
image_height = int(image.size[1]/scale)
t = transforms.Resize([image_height,image_width])
image = t(image)
return image
# Scales the targets with defined scale
def _prescaleBB(self, BB, scale):
scaledbb = [round(p/scale,1) for p in BB]
return scaledbb
def cropBBox(self,bbox,crop_size, image_height, image_width):
bbox_aligned = []
x, y, w, h = bbox[0], bbox[1], bbox[2], bbox[3]
# Casses for cropping
if image_height < crop_size:
offset = (crop_size - image_height) // 2
y = y + offset
if (y+h) > crop_size:
offset = (y+h)-crop_size
h = h - offset
if image_width < crop_size:
offset = (crop_size - image_width) // 2
x = x + offset
if (x+w) > crop_size:
offset = (x+w)-crop_size
w = w - offset
if image_width > crop_size:
offset = (image_width - crop_size) // 2
if offset > x:
# Deal with BB coincide with left cropping boundary
w = w -(offset-x)
x = 0
else:
x = x - offset
# Deal with BB coincide with right cropping boundary
if (x+w) > crop_size:
offset = (x+w)-crop_size
w = w - offset
if image_height > crop_size:
offset = (image_height - crop_size) // 2
if offset > y:
# Deal with BB coincide with top cropping boundary
h = h -(offset-y)
y = 0
else:
y = y - offset
# Deal with BB coincide with bottom cropping boundary
if (y+h) > crop_size:
offset = (y+h)-crop_size
h = h - offset
bbox_aligned.append(x)
bbox_aligned.append(y)
bbox_aligned.append(w)
bbox_aligned.append(h)
if ((w <= 0) or (h <= 0)):
return None
else:
x_scale, y_scale = 1.0,1.0
return torch.mul(torch.tensor(bbox_aligned), torch.tensor([x_scale, y_scale, x_scale, y_scale]))
def __round_floats(self,o):
'''
Used to round floats before writing to json file
'''
if isinstance(o, float):
return round(o, 2)
if isinstance(o, dict):
return {k: self.__round_floats(v) for k, v in o.items()}
if isinstance(o, (list, tuple)):
return [self.__round_floats(x) for x in o]
return o
def _check_if_annot_ignored(self, annot_bbox, ignore_bboxes):
'''gets an annotation and ignore bboxes list in [xmin, ymin, w, h] form and calculates the percentage
of the overlapping area. If overlapping area exceeds 50% for any ignore part, returns True, otherwise returns False
'''
annot_bbox = annot_bbox.copy()
annot_area = max(annot_bbox[2] * annot_bbox[3], 0)
annot_bbox[2] = annot_bbox[0] + annot_bbox[2]
annot_bbox[3] = annot_bbox[1] + annot_bbox[3]
for ignore_bbox in ignore_bboxes:
ignore_bbox = ignore_bbox.copy()
ignore_bbox[2] = ignore_bbox[0] + ignore_bbox[2]
ignore_bbox[3] = ignore_bbox[1] + ignore_bbox[3]
x_min_intersect = max(annot_bbox[0], ignore_bbox[0])
y_min_intersect = max(annot_bbox[1], ignore_bbox[1])
x_max_intersect = min(annot_bbox[2], ignore_bbox[2])
y_max_intersect = min(annot_bbox[3], ignore_bbox[3])
w = max(x_max_intersect - x_min_intersect, 0)
h = max(y_max_intersect - y_min_intersect, 0)
if annot_area <= 0:
return True
if w * h / annot_area > 0.5:
return True
return False
def createResizedAnnotJson(self,targetFileName,cropsize=512, mask_ignore_parts=False, ignore_parts_file=None):
'''
Resizes person annotations after center crop operation and saves as json file to the
directory of original annotations with the name "targetFileName"
If 'mask_ignore_parts' flag set to true and corresponding wider dataset ignore_parts_file supplied,
annotations having 50% or more overlap with an ignore part are deleted.
'''
# Get ignore part bb's in to a dictionary, wit image names as keys
if mask_ignore_parts:
ignore_part_dict = {}
with open(ignore_parts_file) as f:
for t, ignore_raw in enumerate(f):
ignore_raw = ignore_raw.split()
imgName = ignore_raw[:1][0]
BBs_str = ignore_raw[1:]
bb_raw = [int(bb) for bb in BBs_str]
BBs = []
bb = []
for i, p in enumerate(bb_raw):
bb.append(p)
if ((i+1)%4 == 0):
BBs.append(bb)
bb = []
ignore_part_dict[imgName] = BBs
t1 = time.time()
# Get original json annot file path, and create pah for resized json annot file
path, annotfilename = os.path.split(self.annFilePath)
resizedAnnotPath = os.path.join(path,targetFileName)
print('')
print(f'Creating Json file for resized annotations: {resizedAnnotPath}')
# Load original annotation json file as dictionary and assign it to resized annot dict
with open(self.annFilePath) as json_file:
resizedanotDict = json.load(json_file)
# Original annotations array
origannList = resizedanotDict['annotations']
# Check if center crop applied
centerCropped = False
if self.transforms is not None:
# If center crop applied, transform BBs as well
for t in self.transforms.transform.transforms:
if (type(t) == torchvision.transforms.transforms.CenterCrop):
centerCropped = True
resizedannList = []
for resizedannot in origannList:
currentcatID = resizedannot['category_id']
currentBB = resizedannot['bbox']
currentImgID = resizedannot['image_id']
# if annotations overlaps with an ignore part, do not add it to new annot file
if mask_ignore_parts:
image_name = self.coco.loadImgs(currentImgID)[0]['file_name']
if image_name in ignore_part_dict:
ignoreBBs = ignore_part_dict[image_name]
is_ignored = False
is_ignored = self._check_if_annot_ignored(resizedannot['bbox'].copy(), ignoreBBs)
if is_ignored:
continue
# Get crop size and original image sizes
image_width = self.coco.loadImgs(currentImgID)[0]['width']
image_height = self.coco.loadImgs(currentImgID)[0]['height']
# If presclae applied to image, calculate new image width and height
scale = self._calcPrescale(image_width=image_width, image_height=image_height)
image_width = image_width / scale
image_height = image_height / scale
if currentcatID == self.catPersonId:
# if BB is person
bbox = resizedannot['bbox'].copy()
# If prescale appied to image, resize annotations BBs
bbox = self._prescaleBB(bbox, scale)
# If center crop applied, crop/recalculate BBs as well
if centerCropped:
croppedBB = self.cropBBox(bbox, cropsize,image_height,image_width)
else:
croppedBB = torch.tensor(bbox)
if (croppedBB != None):
# If BB is person and valid after crop, add it to resized annotations list
croppedBB = croppedBB.tolist()
resizedannot['bbox'] = self.__round_floats(croppedBB)
resizedannot['area'] = self.__round_floats(croppedBB[2]*croppedBB[3])
resizedannList.append(resizedannot)
else:
# If BB is non-person add it to resized annotations list as it is
resizedannList.append(resizedannot)
# If prescale or center-crop applied
# Change width and height information of "images" field in annotations file
origImgList = resizedanotDict['images']
for i, imagInfo in enumerate(origImgList):
curInfo = origImgList[i]
image_width = curInfo['width']
image_height = curInfo['height']
if centerCropped:
curInfo['width'] = cropsize
curInfo['height'] = cropsize
else:
scale = self._calcPrescale(image_width=image_width, image_height=image_height)
curInfo['width'] = int(image_width / scale)
curInfo['height'] = int(image_height / scale)
origImgList[i] = curInfo.copy()
resizedanotDict['images'] = origImgList
resizedanotDict['annotations'] = resizedannList
print('Saving resized annotations to json file...')
# Save resized annotations in json file
resizedanotDict = json.dumps(resizedanotDict)
with open(resizedAnnotPath, 'w') as outfile:
outfile.write(resizedanotDict)
print(f'{resizedAnnotPath} saved.')
t2 = time.time()
print(f'Elapsed time: {t2-t1} seconds')
# ref: https://github.com/ufoym/imbalanced-dataset-sampler
class ImbalancedDatasetSampler(torch.utils.data.sampler.Sampler):
"""Samples elements randomly from a given list of indices for imbalanced dataset
Arguments:
indices: a list of indices
num_samples: number of samples to draw
constantSeed: Make it true if you want same random at each run
callback_get_label: a callback-like function which takes two arguments - dataset and index
"""
def __init__(self, dataset,constantSeed: bool = False, indices: list = None, num_samples: int = None,
callback_get_label: Callable = None, ratio: int = 4):
# if indices is not provided, all elements in the dataset will be considered
self.constantSeed = constantSeed
self.indices = list(range(len(dataset))) if indices is None else indices
# define custom callback
self.callback_get_label = callback_get_label
# if num_samples is not provided, draw `len(indices)` samples in each iteration
self.num_samples = len(self.indices) if num_samples is None else num_samples
# distribution of classes in the dataset
df = pd.DataFrame()
df["label"] = self._get_labels(dataset)
df.index = self.indices
df = df.sort_index()
label_to_count = df["label"].value_counts()
label_to_count[1] = int(label_to_count[1] / ratio)
weights = 1.0 / label_to_count[df["label"]]
self.weights = torch.DoubleTensor(weights.to_list())
def _get_labels(self, dataset):
return dataset.get_labels()
def __iter__(self):
if self.constantSeed:
torch.random.manual_seed(1234)
return (self.indices[i] for i in torch.multinomial(self.weights, self.num_samples, replacement=True))
def __len__(self):
return self.num_samples |