Object Detection
vision
File size: 45,041 Bytes
780c589
 
df8cf63
780c589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
###########################################################################
# Computer vision - Embedded person tracking demo software by HyperbeeAI. #
# Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected] #
###########################################################################
import torch, sys
import torch.nn as nn
import numpy as np
from torch.autograd import Function
from qat_core.functions import quantization, clamping_qa, clamping_hw, calc_out_shift, calc_out_shift_rho
import torch.nn.functional as F

###################################################
### Base layer for conv/linear, 
###    enabling quantization-related mechanisms
class shallow_base_layer(nn.Module):
    def __init__(
            self,
            quantization_mode = 'fpt', # 'fpt', 'fpt_unconstrained', 'qat', 'qat_ap' and 'eval'
            pooling_tuple     = False, # boolean flag, none or tuple (kernel,stride,padding)
            # if it is a tuple with (kernel_size, stride, padding) arguments it sets the pooling with these parameters
            # if it is True, then it sets kernel_size = 2, stride = 2, padding = 0
            # if it is False, then it sets the pooling None
            # if it is None, it sets the pooling None
            operation_module  = None,  # torch nn module for keeping and updating conv/linear parameters
            operation_fcnl    = None,  # torch nn.functional for actually doing the operation
            activation_module = None,  # torch nn module for relu/abs
            batchnorm_module  = None,  # torch nn module for batchnorm, see super
            conv_groups       = None,  # we use this to do only depthwise for now. so grouped conv only possible with num_groups=C_in_channels
            output_width_30b  = False, # boolean flag that chooses between "bigdata" (32b) and normal (8b) activation modes for MAX78000
            padding_mode      = "zeros", # used to decide which type of padding operation among "zeros", "reflect", "replicate" and "circular" is to be performed. default with mode "zeros" and padding value 0 corresponds to no padding
            transposed        = False  # either the operation is convtransposed or not
        ):
        super().__init__()

        ###############################################################################
        # Initialize stuff that won't change throughout the model's lifetime here
        # since this place will only be run once (first time the model is declared)
        if isinstance(pooling_tuple, tuple) and (len(pooling_tuple) == 3):
            self.pool   = nn.MaxPool2d(kernel_size=pooling_tuple[0], stride=pooling_tuple[1], padding=pooling_tuple[2])
        elif (type(pooling_tuple) == type(True)):
            if(pooling_tuple==True):
                self.pool   = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
            else:
                self.pool   = None
        elif pooling_tuple == None:
            self.pool   = None
        else:
            print('wrong pooling type in model. (kernel,stride,padding) as a tuple are acceptable. exiting')
            sys.exit()


        ### Burak: we have to access and change (forward pass) and also train (backward pass) parameters .weight and .bias for the operations
        ###        therefore we keep both a functional and a module for Conv2d/Linear. The name "op" is mandatory for keeping params in Maxim
        ###        experiment format.
        self.op         = operation_module
        self.op_fcn     = operation_fcnl
        self.act        = activation_module
        self.bn         = batchnorm_module
        self.wide       = output_width_30b
        self.dw_groups  = conv_groups
        self.padding_mode     = padding_mode
        self.transposed = transposed

        ###############################################################################
        # Initialize stuff that will change during mode progression (FPT->QAT->Eval/HW).
        self.mode               = quantization_mode;
        self.quantize_Q_ud_8b   = None
        self.quantize_Q_ud_wb   = None
        self.quantize_Q_ud_bb   = None
        self.quantize_Q_ud_ap   = None
        self.quantize_Q_d_8b    = None
        self.quantize_Q_u_wb    = None
        self.quantize_Q_ud_wide = None
        self.quantize_Q_d_wide = None
        self.clamp_C_qa_8b = None
        self.clamp_C_qa_bb = None
        self.clamp_C_qa_wb = None
        self.clamp_C_hw_8b = None
        self.clamp_C_qa_wide = None
        self.clamp_C_hw_wide = None

        ### Burak: these aren't really trainable parameters, but they're logged in the Maxim experiment format. It seems they marked
        ###        them as "non-trainable parameters" to get them automatically saved in the state_dict
        self.output_shift        = nn.Parameter(torch.Tensor([ 0 ]), requires_grad=False) ### Burak: we called this los, this varies, default:0
        self.weight_bits         = nn.Parameter(torch.Tensor([ 8 ]), requires_grad=False) ### Burak: we called this wb, this varies, default:8
        self.bias_bits           = nn.Parameter(torch.Tensor([ 8 ]), requires_grad=False) ### Burak: this is always 8
        self.quantize_activation = nn.Parameter(torch.Tensor([ 0 ]), requires_grad=False) ### Burak: this is 0 in FPT, 1 in QAT & eval/hardware, default: fpt
        self.adjust_output_shift = nn.Parameter(torch.Tensor([ 1 ]), requires_grad=False) ### Burak: this is 1 in FPT & QAT, 0 in eval/hardware, default: fpt
        self.shift_quantile      = nn.Parameter(torch.Tensor([ 1 ]), requires_grad=False) ### Burak: this varies, default:1 (naive)

        ###############################################################################
        # Do first mode progression (to the default)
        ### Burak: this recognizes that layer configuration is done via a function,
        ###        thus, can be done again in training time for mode progression
        weight_bits      = self.weight_bits
        bias_bits        = self.bias_bits
        shift_quantile   = self.shift_quantile
        self.configure_layer_base( weight_bits, bias_bits, shift_quantile )


    # This will be called during mode progression to set fields,
    # check workflow-training-modes.png in doc for further info.
    # sets functions for all modes though, not just the selected mode
    def configure_layer_base(self, weight_bits, bias_bits, shift_quantile):
        # quantization operators
        self.quantize_Q_ud_8b = quantization(xb=8, mode='updown', wide=False, m=None, g=None)  # 8 here is activation bits
        self.quantize_Q_ud_wb = quantization(xb=weight_bits, mode='updown', wide=False, m=None, g=None)
        self.quantize_Q_ud_bb = quantization(xb=bias_bits, mode='updown', wide=False, m=None, g=None)
        self.quantize_Q_ud_ap = quantization(xb=2, mode='updown_ap', wide=False, m=None, g=None)  # 2 here is dummy, mode antipodal overrides xb
        self.quantize_Q_d_8b = quantization(xb=8, mode='down', wide=False, m=None, g=None)  # 8 here is activation bits
        self.quantize_Q_u_wb = quantization(xb=weight_bits, mode='up', wide=False, m=None, g=None)
        self.quantize_Q_ud_wide = quantization(xb=8, mode='updown', wide=True, m=None, g=None)  # 8 here is activation bits, but its wide, so check inside
        self.quantize_Q_d_wide = quantization(xb=8, mode='down', wide=True, m=None, g=None)  # 8 here is activation bits, but its wide, so check inside

        # clamping operators
        self.clamp_C_qa_8b    = clamping_qa(xb = 8,           wide=False) # 8 here is activation bits
        self.clamp_C_qa_bb    = clamping_qa(xb = bias_bits,   wide=False)
        self.clamp_C_qa_wb    = clamping_qa(xb = weight_bits, wide=False)
        self.clamp_C_hw_8b    = clamping_hw(xb = 8,           wide=False) # 8 here is activation bits
        self.clamp_C_qa_wide  = clamping_qa(xb = None,        wide=True)  # None to avoid misleading info on the # of bits, check inside
        self.clamp_C_hw_wide  = clamping_hw(xb = None,        wide=True)  # None to avoid misleading info on the # of bits, check inside

        # state variables
        self.weight_bits = nn.Parameter(torch.Tensor([weight_bits]), requires_grad=False)
        self.bias_bits = nn.Parameter(torch.Tensor([bias_bits]), requires_grad=False)
        self.shift_quantile = nn.Parameter(torch.Tensor([shift_quantile]), requires_grad=False)

    # This will be called during mode progression, during training (scale bn parameters with 4)
    def mode_fptunconstrained2fpt(self, quantization_mode):
        if(self.bn is not None):
            weightsExist = (self.bn.weight != None)
            biasExist = (self.bn.bias != None)

            # BN outputs multiplied by 4 to compensate effect of dividing 4 at forward pass
            if(weightsExist and biasExist):
                self.bn.weight.data = self.bn.weight.data * 4.0
                self.bn.bias.data   = self.bn.bias.data * 4.0
            else:
                # batchnorm affine=False
                self.bn.running_var = self.bn.running_var / 4.0
        else:
            pass
            #print('This layer does not have batchnorm')

        self.mode                = quantization_mode;
        self.quantize_activation = nn.Parameter(torch.Tensor([ 0 ]), requires_grad=False) ### Burak: this is 0 in FPT, 1 in QAT & eval/hardware
        self.adjust_output_shift = nn.Parameter(torch.Tensor([ 1 ]), requires_grad=False) ### Burak: this is 1 in FPT & QAT, 0 in eval/hardware


    # This will be called during mode progression, during training
    def mode_fpt2qat(self, quantization_mode):
        # just fold batchnorms
        if(self.bn is not None):
            weightsExist = (self.bn.weight != None)
            biasExist = (self.bn.bias != None)
            if(weightsExist and biasExist):
                # batchnorm affine=True
                w_fp = self.op.weight.data

                scale_factor = self.bn.weight.data
                shift_factor = self.bn.bias.data

                running_mean_mu     = self.bn.running_mean
                running_var         = self.bn.running_var
                running_stdev_sigma = torch.sqrt(running_var + 1e-5)

                w_hat = scale_factor.reshape(-1,1,1,1) * w_fp * (1.0 / (running_stdev_sigma*4.0)).reshape((w_fp.shape[0],) + (1,) * (len(w_fp.shape) - 1))
                self.op.weight.data = w_hat

                if (self.op.bias != None):
                    b_fp = self.op.bias.data
                    b_hat = scale_factor * (b_fp - running_mean_mu)/(running_stdev_sigma*4.0) + shift_factor/4.0
                    self.op.bias.data   = b_hat
                else:
                    b_fp = torch.zeros_like(shift_factor).to(self.op.weight.data.device)
                    b_hat = scale_factor * (b_fp - running_mean_mu)/(running_stdev_sigma*4.0)  + shift_factor/4.0
                    self.op.register_parameter(name='bias', param=nn.Parameter(torch.zeros_like(b_hat), requires_grad=True))
                    self.op.bias.data   = b_hat

                self.bn             = None

            else:
                # batchnorm affine=False
                w_fp = self.op.weight.data

                running_mean_mu     = self.bn.running_mean
                running_var         = self.bn.running_var
                running_stdev_sigma = torch.sqrt(running_var + 1e-5)

                w_hat =  w_fp * (1.0 / (running_stdev_sigma*4.0)).reshape((w_fp.shape[0],) + (1,) * (len(w_fp.shape) - 1))
                self.op.weight.data = w_hat

                if (self.op.bias != None):
                    b_fp = self.op.bias.data
                    b_hat = (b_fp - running_mean_mu)/(running_stdev_sigma*4.0)
                    self.op.bias.data   = b_hat
                else:
                    b_fp = torch.zeros(self.op.weight.data.shape[0]).to(self.op.weight.data.device)
                    b_hat = (b_fp - running_mean_mu)/(running_stdev_sigma*4.0)
                    self.op.register_parameter(name='bias', param=nn.Parameter(torch.zeros_like(b_hat), requires_grad=True))
                    self.op.bias.data   = b_hat

                self.bn             = None
        else:
            pass
            #print('This layer does not have batchnorm')
        self.mode                = quantization_mode;
        self.quantize_activation = nn.Parameter(torch.Tensor([ 1 ]), requires_grad=False) ### Burak: this is 0 in FPT, 1 in QAT & eval/hardware
        self.adjust_output_shift = nn.Parameter(torch.Tensor([ 1 ]), requires_grad=False) ### Burak: this is 1 in FPT & QAT, 0 in eval/hardware

    # This will be called during mode progression after training, for eval
    def mode_qat2hw(self, quantization_mode):
        w_hat = self.op.weight.data
        if self.op.bias is not None:
            b_hat = self.op.bias.data
        else:
            b_hat = None

        shift = -self.output_shift.data;
        s_o   = 2**(shift)
        wb    = self.weight_bits.data.cpu().numpy()[0]

        w_clamp = [-2**(wb-1)  , 2**(wb-1)-1 ]
        b_clamp = [-2**(wb+8-2), 2**(wb+8-2)-1] # 8 here is activation bits

        w = w_hat.mul(2**(wb -1)).mul(s_o).add(0.5).floor()
        w = w.clamp(min=w_clamp[0],max=w_clamp[1])
        
        if b_hat is not None:
            b = b_hat.mul(2**(wb -1 + 7)).mul(s_o).add(0.5).floor()
            b = b.clamp(min=b_clamp[0],max=b_clamp[1])
            self.op.bias.data = b
        else:
            self.op.bias = None

        self.op.weight.data      = w
        self.mode                = quantization_mode;
        self.quantize_activation = nn.Parameter(torch.Tensor([ 1 ]), requires_grad=False) ### Burak: this is 0 in FPT, 1 in QAT & eval/hardware
        self.adjust_output_shift = nn.Parameter(torch.Tensor([ 0 ]), requires_grad=False) ### Burak: this is 1 in FPT & QAT, 0 in eval/hardware

    def mode_qat_ap2hw(self, quantization_mode):
        w_hat = self.op.weight.data
        b_hat = self.op.bias.data

        shift = -self.output_shift.data;
        s_o = 2 ** (shift)
        wb = self.weight_bits.data.cpu().numpy()[0]

        if (wb == 2):
            w = self.quantize_Q_ud_ap(w_hat).mul(2.0)
        else:
            w_clamp = [-2 ** (wb - 1), 2 ** (wb - 1) - 1]
            w = w_hat.mul(2 ** (wb - 1)).mul(s_o).add(0.5).floor()
            w = w.clamp(min=w_clamp[0], max=w_clamp[1])

        b = b_hat.mul(2 ** (wb - 1 + 7)).mul(s_o).add(0.5).floor()

        b_clamp = [-2 ** (wb + 8 - 2), 2 ** (wb + 8 - 2) - 1]  # 8 here is activation bits
        b = b.clamp(min=b_clamp[0], max=b_clamp[1])

        self.op.weight.data = w
        self.op.bias.data = b
        self.mode = quantization_mode;
        self.quantize_activation = nn.Parameter(torch.Tensor([1]),
                                                requires_grad=False)  ### Burak: this is 0 in FPT, 1 in QAT & eval/hardware


        self.adjust_output_shift = nn.Parameter(torch.Tensor([self.output_shift.data]),
                                                requires_grad=False)  ### Burak: this is 1 in FPT & QAT, 0 in eval/hardware

    def forward(self, x):
        if (self.pool is not None):
            x = self.pool(x)

        if (self.mode == 'fpt'):
            # pre-compute stuff
            w_fp = self.op.weight
            b_fp = self.op.bias

            if not isinstance(self, fullyconnected):
                # actual forward pass
                # Deniz: nn.functional.conv's are not supporting padding modes, so had to add this nn.functional.pad manually.
                # Also, default padding mode names are different for nn.func.pad and nn.conv. Related links:
                # https://discuss.pytorch.org/t/torch-nn-functional-conv1d-padding-like-torch-nn-conv1d/119489
                # https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html
                if self.op.padding_mode == "zeros":
                    self.op.padding_mode = "constant"
                if self.transposed:
                    x = self.op_fcn(x, w_fp, b_fp, self.op.stride, self.op.padding, self.op.output_padding);
                else:
                    if (self.dw_groups is None):
                        # Note that pad=self.op.padding is just a container
                        x = self.op_fcn(F.pad(x, pad=self.op.padding, mode=self.op.padding_mode), w_fp, b_fp,
                                        self.op.stride, 0, self.op.dilation)
                    else:
                        x = self.op_fcn(F.pad(x, pad=self.op.padding, mode=self.op.padding_mode), w_fp, b_fp,
                                        self.op.stride, 0, self.op.dilation, groups=self.dw_groups)
            else:
                x = self.op_fcn(x, w_fp, b_fp, None, None)

            if (self.bn is not None):
                x = self.bn(x)  # make sure var=1 and mean=0
                x = x / 4.0  # since BN is only making sure var=1 and mean=0, 1/4 is to keep everything within [-1,1] w/ hi prob.
            if (self.act is not None):
                x = self.act(x)
            if ((self.wide) and (self.act is None)):
                x = self.clamp_C_qa_wide(x)
            else:
                x = self.clamp_C_qa_8b(x)

            # save stuff (los is deactivated in fpt)
            self.output_shift = nn.Parameter(torch.Tensor([0]), requires_grad=False)  # functional, used in Maxim-friendly experiments
            self.quantize_activation = nn.Parameter(torch.Tensor([0]), requires_grad=False)  # ceremonial, for Maxim-friendly experiments
            self.adjust_output_shift = nn.Parameter(torch.Tensor([1]), requires_grad=False)  # ceremonial, for Maxim-friendly experiments

        elif (self.mode == 'fpt_unconstrained'):
            # pre-compute stuff
            w_fp = self.op.weight
            b_fp = self.op.bias

            if not isinstance(self, fullyconnected):
                # actual forward pass
                # Deniz: nn.functional.conv's are not supporting padding modes, so had to add this nn.functional.pad manually.
                # Also, default padding mode names are different for nn.func.pad and nn.conv. Related links:
                # https://discuss.pytorch.org/t/torch-nn-functional-conv1d-padding-like-torch-nn-conv1d/119489
                # https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html
                if self.op.padding_mode == "zeros":
                    self.op.padding_mode = "constant"
                if self.transposed:
                    x = self.op_fcn(x, w_fp, b_fp, self.op.stride, self.op.padding, self.op.output_padding);
                else:
                    if (self.dw_groups is None):
                        # Note that pad=self.op.padding is just a container
                        x = self.op_fcn(F.pad(x, pad=self.op.padding, mode=self.op.padding_mode), w_fp, b_fp,
                                        self.op.stride, 0, self.op.dilation)
                    else:
                        x = self.op_fcn(F.pad(x, pad=self.op.padding, mode=self.op.padding_mode), w_fp, b_fp,
                                        self.op.stride, 0, self.op.dilation, groups=self.dw_groups)
            else:
                x = self.op_fcn(x, w_fp, b_fp, None, None)

            if (self.bn is not None):
                x = self.bn(x)  # make sure var=1 and mean=0
            if (self.act is not None):
                x = self.act(x)
            # save stuff (los is deactivated in fpt)
            self.output_shift = nn.Parameter(torch.Tensor([0]), requires_grad=False)  # functional, used in Maxim-friendly experiments
            self.quantize_activation = nn.Parameter(torch.Tensor([0]), requires_grad=False)  # ceremonial, for Maxim-friendly experiments
            self.adjust_output_shift = nn.Parameter(torch.Tensor([1]), requires_grad=False)  # ceremonial, for Maxim-friendly experiments

        elif (self.mode == 'qat'):
            ###############################################################################
            ## ASSUMPTION: batchnorms are already folded before coming here. Check doc,  ##
            ## the parameters with _fp and with _hat are of different magnitude          ##
            ###############################################################################

            # pre-compute stuff
            w_hat = self.op.weight
            b_hat = self.op.bias
            
            if b_hat is not None:
                los = calc_out_shift(w_hat.detach(), b_hat.detach(), self.shift_quantile.detach())
            else:
                los = calc_out_shift(w_hat.detach(), None, self.shift_quantile.detach())

            s_w = 2 ** (-los)
            s_o = 2 ** (los)
            w_hat_q = self.clamp_C_qa_wb(self.quantize_Q_ud_wb(w_hat * s_w));
            
            if b_hat is not None:
                b_hat_q = self.clamp_C_qa_bb(self.quantize_Q_ud_bb(b_hat * s_w));
            else:
                b_hat_q = None

            if not isinstance(self, fullyconnected):
                # actual forward pass
                # Deniz: nn.functional.conv's are not supporting padding modes, so had to add this nn.functional.pad manually.
                # Also, default padding mode names are different for nn.func.pad and nn.conv. Related links:
                # https://discuss.pytorch.org/t/torch-nn-functional-conv1d-padding-like-torch-nn-conv1d/119489
                # https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html
                if self.op.padding_mode == "zeros":
                    self.op.padding_mode = "constant"
                if self.transposed:
                    x = self.op_fcn(x, w_hat, b_hat, self.op.stride, self.op.padding, self.op.output_padding);
                else:
                    if (self.dw_groups is None):
                        # Note that pad=self.op.padding is just a container
                        x = self.op_fcn(F.pad(x, pad=self.op.padding, mode=self.op.padding_mode), w_hat_q, b_hat_q,
                                        self.op.stride, 0, self.op.dilation)
                    else:
                        x = self.op_fcn(F.pad(x, pad=self.op.padding, mode=self.op.padding_mode), w_hat_q, b_hat_q,
                                        self.op.stride, 0, self.op.dilation, groups=self.dw_groups)
            else:
                x = self.op_fcn(x, w_hat_q, b_hat_q, None, None)

            x = x * s_o
            if (self.act is not None):
                x = self.act(x)
            if ((self.wide) and (self.act is None)):
                x = self.quantize_Q_ud_wide(x)
                x = self.clamp_C_qa_wide(x)
                ### Deniz: This addition is needed for wide layers to work as expected
                x = x / (2 ** (5));
            else:
                x = self.quantize_Q_ud_8b(x)
                x = self.clamp_C_qa_8b(x)

                # save stuff
            self.output_shift = nn.Parameter(torch.Tensor([los]),
                                             requires_grad=False)  # functional, used in Maxim-friendly checkpoints

        elif (self.mode == 'qat_ap'):
            ###############################################################################
            ## ASSUMPTION: batchnorms are already folded before coming here. Check doc,  ##
            ## the parameters with _fp and with _hat are of different magnitude          ##
            ###############################################################################

            # pre-compute stuff
            w_hat = self.op.weight
            b_hat = self.op.bias
            
            if b_hat is not None:
                los = calc_out_shift(w_hat.detach(), b_hat.detach(), self.shift_quantile.detach())
            else:
                los = calc_out_shift(w_hat.detach(), None, self.shift_quantile.detach())
            
            s_w = 2 ** (-los)
            s_o = 2 ** (los)
            ##############################################
            # This is the only difference from qat
            if (self.weight_bits.data == 2):
                w_hat_q = self.quantize_Q_ud_ap(w_hat * s_w);
            else:
                w_hat_q = self.clamp_C_qa_wb(self.quantize_Q_ud_wb(w_hat * s_w));
            ##############################################
            
            if b_hat is not None:
                b_hat_q = self.clamp_C_qa_bb(self.quantize_Q_ud_bb(b_hat * s_w));
            else:
                b_hat_q = None

            if not isinstance(self, fullyconnected):
                # actual forward pass
                # Deniz: nn.functional.conv's are not supporting padding modes, so had to add this nn.functional.pad manually.
                # Also, default padding mode names are different for nn.func.pad and nn.conv. Related links:
                # https://discuss.pytorch.org/t/torch-nn-functional-conv1d-padding-like-torch-nn-conv1d/119489
                # https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html
                if self.op.padding_mode == "zeros":
                    self.op.padding_mode = "constant"
                if self.transposed:
                    x = self.op_fcn(x, w_hat, b_hat, self.op.stride, self.op.padding, self.op.output_padding);
                else:
                    if (self.dw_groups is None):
                        # Note that pad=self.op.padding is just a container
                        x = self.op_fcn(F.pad(x, pad=self.op.padding, mode=self.op.padding_mode), w_hat_q, b_hat_q,
                                        self.op.stride, 0, self.op.dilation)
                    else:
                        x = self.op_fcn(F.pad(x, pad=self.op.padding, mode=self.op.padding_mode), w_hat_q, b_hat_q,
                                        self.op.stride, 0, self.op.dilation, groups=self.dw_groups)
            else:
                x = self.op_fcn(x, w_hat_q, b_hat_q, None, None)

            x = x * s_o
            if (self.act is not None):
                x = self.act(x)
            if ((self.wide) and (self.act is None)):
                x = self.quantize_Q_ud_wide(x)
                x = self.clamp_C_qa_wide(x)
                x = x / (2 ** (5));
            else:
                x = self.quantize_Q_ud_8b(x)
                x = self.clamp_C_qa_8b(x)

            # save stuff
            self.output_shift = nn.Parameter(torch.Tensor([los]),
                                             requires_grad=False)  # functional, used in Maxim-friendly checkpoints

        elif self.mode == 'eval':
            #####################################################################################
            ## ASSUMPTION: parameters are already converted to HW before coming here.Check doc ##
            #####################################################################################

            # pre-compute stuff
            w = self.op.weight
            b = self.op.bias
            los = self.output_shift
            s_o = 2 ** los
            w_q = self.quantize_Q_u_wb(w);
            if b is not None:
                b_q = self.quantize_Q_u_wb(b);  # yes, wb, not a typo, they need to be on the same scale
            else:
                b_q = None

            if not isinstance(self, fullyconnected):
                # actual forward pass
                # Deniz: nn.functional.conv's are not supporting padding modes, so had to add this nn.functional.pad manually.
                # Also, default padding mode names are different for nn.func.pad and nn.conv. Related links:
                # https://discuss.pytorch.org/t/torch-nn-functional-conv1d-padding-like-torch-nn-conv1d/119489
                # https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html
                if self.op.padding_mode == "zeros":
                    self.op.padding_mode = "constant"
                if self.transposed:
                    x = self.op_fcn(x, w, b, self.op.stride, self.op.padding, self.op.output_padding);
                else:
                    if (self.dw_groups is None):
                        # Note that pad=self.op.padding is just a container
                        x = self.op_fcn(F.pad(x, pad=self.op.padding, mode=self.op.padding_mode), w_q, b_q,
                                        self.op.stride, 0, self.op.dilation)
                    else:
                        x = self.op_fcn(F.pad(x, pad=self.op.padding, mode=self.op.padding_mode), w_q, b_q,
                                        self.op.stride, 0, self.op.dilation, groups=self.dw_groups)
            else:
                x = self.op_fcn(x, w_q, b_q, None, None)

            x = x * s_o
            if (self.act is not None):
                x = self.act(x)
            if ((self.wide) and (self.act is None)):
                x = self.quantize_Q_d_wide(x)
                x = self.clamp_C_hw_wide(x)
                ### Deniz: This addition is needed for wide layers to work as expected
                x = x / (2 ** (5));
            else:
                x = self.quantize_Q_d_8b(x)
                x = self.clamp_C_hw_8b(x)

            # nothing to save, this was a hardware-emulated evaluation pass
        else:
            print('wrong quantization mode. should have been one of {fpt, qat, eval}. exiting')
            sys.exit()

        return x


class conv(shallow_base_layer):
    def __init__(
            self,
            C_in_channels      = None,    # number of input channels
            D_out_channels     = None,    # number of output channels
            K_kernel_dimension = None,    # square kernel dimension
            padding            = (1,1,1,1),   # (padding_left, padding_right, padding_top, padding_bottom)
            stride             = (1,1),   # controls the stride of the kernel for width and height
            pooling            = False,   # boolean flag, none or tuple (kernel,stride,padding)
            # if it is a tuple with (kernel_size, stride, padding) arguments it sets the pooling with these parameters
            # if it is True, then it sets kernel_size = 2, stride = 2, padding = 0
            # if it is False, then it sets the pooling None
            # if it is None, it sets the pooling None
            batchnorm          = False,   # boolean flag for now, no trainable affine parameters
            batchnorm_affine   = False,   # boolean flag for now, to do/do not make affine batchnorm operation
            batch_momentum     = 0.05,    # momentum parameter for batchnorm
            num_groups         = None,    # we use this to do only depthwise for now. so grouped conv only possible with num_groups=C_in_channels
            activation         = None,    # 'relu' and 'relu6' are the only choices for now
            bias               = True,    # adds a learnable bias to the output. Default: True
            transposed         = False,   # either conv2d or conv2dtranspose
            output_width_30b   = False,   # boolean flag that chooses between "bigdata" (32b) and normal (8b) activation modes for MAX78000
            weight_initialization=None,
            quantization_mode = 'fpt'
    ):
        if(activation is None):
            activation_fcn = None;
        elif(activation == 'relu'):
            activation_fcn = nn.ReLU(inplace=True);
        elif(activation == 'relu6'):
            # Clamping limits get scaled in hw mode, but relu6 cannot be scaled that way.
            print('Warning!!! Relu6 activation is selected for a layer, note that it is only supported for fpt unconstrained mode, it causes unexpected behavior in other modes')
            activation_fcn = nn.ReLU6(inplace=True);
        elif(activation == 'sigmoid'):
            activation_fcn = nn.Sigmoid();
        else:
            print('wrong activation type in model. only {relu and relu6} are acceptable. exiting')
            sys.exit()

        ### Burak: only a module is enough for BN since we neither need to access internals in forward pass, nor train anything (affine=False)
        if(batchnorm):
            if(batchnorm_affine):
                batchnorm_mdl  = nn.BatchNorm2d(D_out_channels, eps=1e-05, momentum=batch_momentum, affine=True)
            else:
                batchnorm_mdl  = nn.BatchNorm2d(D_out_channels, eps=1e-05, momentum=batch_momentum, affine=False)
        else:
            batchnorm_mdl  = None;

        '''
        Groups = 1
            This setting is the default setting. Under this setting, all inputs are convolved to all outputs.
        Groups ≠ 1
            Must be an integer such that the number of input channels and the number of output channels are both divisible by this number.  
            A non-default groups value allows us to create multiple paths where each path connects only a subset of input channels to the output channels.
            For details see : https://iksinc.online/2020/05/10/groups-parameter-of-the-convolution-layer/
        '''

        if transposed:
            if(num_groups is not None):
                print('convtranspose function does not accept groups option. exiting')
                sys.exit()
            else:
                operation_mdl  = nn.ConvTranspose2d(C_in_channels, D_out_channels, kernel_size=K_kernel_dimension, stride=stride, padding=padding, bias=bias); # default is group=1
            operation_fcn  = nn.functional.conv_transpose2d
        else:
            if(num_groups is not None):
                operation_mdl  = nn.Conv2d(C_in_channels, D_out_channels, kernel_size=K_kernel_dimension, stride=stride, padding=padding, bias=bias, groups=num_groups);
            else:
                operation_mdl  = nn.Conv2d(C_in_channels, D_out_channels, kernel_size=K_kernel_dimension, stride=stride, padding=padding, bias=bias); # default is group=1
            operation_fcn  = nn.functional.conv2d

        if weight_initialization is not None:
            weight_initialization(operation_mdl.weight)


        super().__init__(
            pooling_tuple      = pooling,
            activation_module  = activation_fcn,
            operation_module   = operation_mdl,
            operation_fcnl     = operation_fcn,
            batchnorm_module   = batchnorm_mdl,
            conv_groups        = num_groups,
            output_width_30b   = output_width_30b,
            quantization_mode  = quantization_mode,
            transposed         = transposed
        )


def linear_functional(x, weight, bias, _stride, _padding):
    # dummy linear function that has same arguments as conv
    return nn.functional.linear(x, weight, bias)


class fullyconnected(shallow_base_layer):
    def __init__(
            # This must be updated, batch norm and ReLU6 issues
            self,
            in_features        = None,    # number of output features
            out_features       = None,    # number of output features
            pooling            = False,   # boolean flag, none or tuple (kernel,stride,padding)
            # if it is a tuple with (kernel_size, stride, padding) arguments it sets the pooling with these parameters
            # if it is True, then it sets kernel_size = 2, stride = 2, padding = 0
            # if it is False, then it sets the pooling None
            # if it is None, it sets the pooling None
            batchnorm          = False,   # boolean flag for now, no trainable affine parameters
            activation         = None,    # 'relu' is the only choice for now
            output_width_30b   = False,    # boolean flag that chooses between "bigdata" (32b) and normal (8b) activation modes for MAX78000
            quantization_mode  = 'fpt'
    ):
        if(activation is None):
            activation_fcn = None;
        elif(activation == 'relu'):
            activation_fcn = nn.ReLU(inplace=True);
        else:
            print('wrong activation type in model. only {relu} is acceptable. exiting')
            sys.exit()

        ### Burak: only a module is enough for BN since we neither need to access internals in forward pass, nor train anything (affine=False)
        if(batchnorm):
            batchnorm_mdl  = nn.BatchNorm2d(out_features, eps=1e-05, momentum=0.05, affine=False)
        else:
            batchnorm_mdl  = None;

        operation_mdl  = nn.Linear(in_features, out_features, bias=True);
        operation_fcn  = linear_functional

        super().__init__(
            pooling_tuple       = pooling,
            activation_module  = activation_fcn,
            operation_module   = operation_mdl,
            operation_fcnl     = operation_fcn,
            batchnorm_module   = batchnorm_mdl,
            output_width_30b   = output_width_30b,
            quantization_mode  = quantization_mode
        )

        # Define dummy arguments to make Linear and conv compatible in shallow_base_layer.
        # the name "op" here refers to op in super, i.e., in base_layer
        self.op.stride = None
        self.op.padding = None

class add_residual(nn.Module):
    def __init__(self, quantization_mode='fpt', activation=None):
        super().__init__()
        self.mode             = quantization_mode;
        self.clamp_C_qa_8b    = clamping_qa( xb = 8, wide=False) # 8 here is activation bits
        self.clamp_C_hw_8b    = clamping_hw( xb = 8, wide=False) # 8 here is activation bits
        if(activation is None):
            self.activation_fcn = nn.Identity();
        elif(activation == 'relu'):
            self.activation_fcn = nn.ReLU(inplace=True);
        elif(activation == 'relu6'):
            # Clamping limits get scaled in hw mode, but relu6 cannot be scaled that way.
            print('Warning!!! Relu6 activation is selected for a layer, note that it is only supported for fpt unconstrained mode, it causes unexpected behavior in other modes')
            self.activation_fcn = nn.ReLU6(inplace=True);
        elif(activation == 'sigmoid'):
            self.activation_fcn = nn.Sigmoid();
        else:
            print('wrong activation type in model. only {relu and relu6 and sigmoid} are acceptable. exiting')
            sys.exit()
    def mode_fptunconstrained2fpt(self, quantization_mode):
        self.mode = 'fpt'

    def mode_fpt2qat(self, quantization_mode):
        self.mode = 'qat'

    def mode_qat2hw(self, quantization_mode):
        self.mode = 'eval'

    def forward(self, x, res):
        x = self.activation_fcn(x+res)
        if(self.mode == 'fpt_unconstrained'):
            pass
        elif(self.mode == 'fpt'):
            x = self.clamp_C_qa_8b(x)
        elif(self.mode == 'qat'):
            x = self.clamp_C_qa_8b(x)
        elif(self.mode == 'eval'):
            x = self.clamp_C_hw_8b(x)
        else:
            print('wrong quantization mode. should have been one of {fpt_unconstrained, fpt, qat, eval}. exiting')
            sys.exit()
        return x


class conv1d(shallow_base_layer):
    def __init__(
            self,
            C_in_channels      = None,    # number of input channels
            D_out_channels     = None,    # number of output channels
            K_kernel_dimension = None,    # kernel size
            padding            = (0,0),   # (padding_left, padding_right)
            stride             = 1,       # stride
            pooling            = False,   # boolean flag, none or tuple (kernel,stride,padding)
            # if it is a tuple with (kernel_size, stride, padding) arguments it sets the pooling with these parameters
            # if it is True, then it sets kernel_size = 2, stride = 2, padding = 0
            # if it is False, then it sets the pooling None
            # if it is None, it sets the pooling None
            batchnorm          = False,   # boolean flag for now, no trainable affine parameters
            batchnorm_affine   = False,   # boolean flag for now, to do/do not make affine batchnorm operation
            num_groups         = None,    # we use this to do only depthwise for now. so grouped conv only possible with num_groups=C_in_channels
            activation         = None,    # 'relu' is the only choice for now
            bias               = True,    # adds a learnable bias to the output. Default: True
            output_width_30b   = False,   # boolean flag that chooses between "bigdata" (32b) and normal (8b) activation modes for MAX78000
            weight_initialization = None,
            quantization_mode = 'fpt',
            dilation           = 1,       # dilation
            padding_mode       = "zeros"  # used to decide which type of padding operation among "zeros", "reflect", "replicate" and "circular" is to be performed. default with mode "zeros" and padding value 0 corresponds to no padding
    ):

        if(activation is None):
            activation_fcn = None;
        elif(activation == 'relu'):
            activation_fcn = nn.ReLU(inplace=True);
        elif(activation == 'relu6'):
            # Clamping limits get scaled in hw mode, but relu6 cannot be scaled that way.
            print('Warning!!! Relu6 activation is selected for a layer, note that it is only supported for fpt unconstrained mode, it causes unexpected behavior in other modes')
            activation_fcn = nn.ReLU6(inplace=True);
        elif(activation == 'sigmoid'):
            self.activation_fcn = nn.Sigmoid();
        else:
            print('wrong activation type in model. only {relu and relu6 and sigmoid} are acceptable. exiting')
            sys.exit()

        if(batchnorm):
            if(batchnorm_affine):
                batchnorm_mdl  = nn.BatchNorm1d(D_out_channels, eps=1e-05, momentum=0.05, affine=True)
            else:
                batchnorm_mdl  = nn.BatchNorm1d(D_out_channels, eps=1e-05, momentum=0.05, affine=False)
        else:
            batchnorm_mdl  = None;

        if(num_groups is not None):
            if(num_groups != C_in_channels):
                print("only num_groups=C_in_channels (i.e., depthwise) is supported for now, exiting")
                sys.exit()
            if(C_in_channels != D_out_channels): # let's not ignore this even though D_out_channels is redundant here
                print('num_in_channels needs to be equal to num_out_channels for depthwise conv layers, exiting')
                sys.exit()
            operation_mdl  = nn.Conv1d(C_in_channels, C_in_channels, kernel_size=K_kernel_dimension, stride=stride, padding=padding, bias=bias, groups=C_in_channels, dilation=dilation, padding_mode=padding_mode);
        else:
            operation_mdl  = nn.Conv1d(C_in_channels, D_out_channels, kernel_size=K_kernel_dimension, stride=stride, padding=padding, bias=bias, dilation=dilation, padding_mode=padding_mode); # default is group=1
        operation_fcn  = nn.functional.conv1d

        if weight_initialization is not None:
            weight_initialization(operation_mdl.weight)

        super().__init__(
            pooling_tuple       = pooling,
            activation_module  = activation_fcn,
            operation_module   = operation_mdl,
            operation_fcnl     = operation_fcn,
            batchnorm_module   = batchnorm_mdl,
            output_width_30b   = output_width_30b,
            quantization_mode  = quantization_mode,
            conv_groups        = num_groups,
            padding_mode       = padding_mode
        )

class concatenate(nn.Module):
    def __init__(self, quantization_mode='fpt',dim=0):
        super().__init__()
        self.dim = dim
        self.mode = quantization_mode;
        self.clamp_C_qa_8b = clamping_qa( xb = 8, wide=False) # 8 here is activation bits
        self.clamp_C_hw_8b = clamping_hw( xb = 8, wide=False) # 8 here is activation bits

    def mode_fptunconstrained2fpt(self, quantization_mode):
        self.mode = 'fpt'

    def mode_fpt2qat(self, quantization_mode):
        self.mode = 'qat'

    def mode_qat2hw(self, quantization_mode):
        self.mode = 'eval'

    def forward(self, x1, x2):
        if(self.mode == 'fpt_unconstrained'):
            x = torch.cat([x1, x2], dim=self.dim)
        elif(self.mode == 'fpt'):
            x = self.clamp_C_qa_8b(torch.cat([x1, x2], dim=self.dim))
        elif(self.mode == 'qat'):
            x = self.clamp_C_qa_8b(torch.cat([x1, x2], dim=self.dim))
        elif(self.mode == 'eval'):
            x = self.clamp_C_hw_8b(torch.cat([x1, x2], dim=self.dim))
        else:
            print('wrong quantization mode. should have been one of {fpt_unconstrained,fpt, qat, eval}. exiting')
            sys.exit()
        return x

# IMPORTANT: Bu kısım şu an quantization yapmıyor, quantized hale getirilmesi gerekiyor.
class Upsample(nn.Module):
    def __init__(self,
                 size=None,
                 scale_factor=None,
                 mode='nearest',
                 align_corners=None,
                 recompute_scale_factor=None
        ):


        super().__init__()
        self.upsample = nn.Upsample(size=size, scale_factor=scale_factor,mode=mode,align_corners=align_corners)

    def forward(self, x):
        x = self.upsample(x)
        return x