File size: 7,715 Bytes
5096607 4e45d68 5096607 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
###########################################################################
# Computer vision - Binary neural networks demo software by HyperbeeAI. #
# Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected] #
###########################################################################
import torch.nn as nn
import layers
class maxim_nas(nn.Module):
def __init__(
self,
num_classes =100,
num_channels =3,
dimensions =(32, 32),
bias =True,
**kwargs
):
super().__init__()
### Burak: disable word wrap in your editor to see this "table" for conv layers properly
### mark that all layers are 'same' padding.
### input ch | out ch | kernel dim | padding
self.conv1_1 = layers.conv( num_channels, 64, 3, 1, pooling=False, batchnorm=True, activation='relu')
self.conv1_2 = layers.conv( 64, 32, 1, 0, pooling=False, batchnorm=True, activation='relu')
self.conv1_3 = layers.conv( 32, 64, 3, 1, pooling=False, batchnorm=True, activation='relu')
self.conv2_1 = layers.conv( 64, 32, 3, 1, pooling=True , batchnorm=True, activation='relu')
self.conv2_2 = layers.conv( 32, 64, 1, 0, pooling=False, batchnorm=True, activation='relu')
self.conv3_1 = layers.conv( 64, 128, 3, 1, pooling=True , batchnorm=True, activation='relu')
self.conv3_2 = layers.conv( 128, 128, 1, 0, pooling=False, batchnorm=True, activation='relu')
self.conv4_1 = layers.conv( 128, 64, 3, 1, pooling=True , batchnorm=True, activation='relu')
self.conv4_2 = layers.conv( 64, 128, 3, 1, pooling=False, batchnorm=True, activation='relu')
self.conv5_1 = layers.conv( 128, 128, 1, 0, pooling=True , batchnorm=True, activation='relu')
self.fc = layers.fullyconnected(512, num_classes, output_width_30b=True, pooling=False, batchnorm=False, activation=None)
def forward(self, x):
x = self.conv1_1(x)
x = self.conv1_2(x)
x = self.conv1_3(x)
x = self.conv2_1(x)
x = self.conv2_2(x)
x = self.conv3_1(x)
x = self.conv3_2(x)
x = self.conv4_1(x)
x = self.conv4_2(x)
x = self.conv5_1(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
class maxim_nas_large(nn.Module):
def __init__(
self,
num_classes =100,
num_channels =3,
dimensions =(32, 32),
bias =True,
**kwargs
):
super().__init__()
### Burak: disable word wrap in your editor to see this "table" for conv layers properly
### mark that all layers are 'same' padding.
### input ch | out ch | kernel dim | padding
self.conv1_1 = layers.conv( num_channels, 128, 3, 1, pooling=False, batchnorm=True, activation='relu')
self.conv1_2 = layers.conv( 128, 128, 1, 0, pooling=False, batchnorm=True, activation='relu')
self.conv1_3 = layers.conv( 128, 256, 3, 1, pooling=False, batchnorm=True, activation='relu')
self.conv2_1 = layers.conv( 256, 128, 3, 1, pooling=True , batchnorm=True, activation='relu')
self.conv2_2 = layers.conv( 128, 128, 1, 0, pooling=False, batchnorm=True, activation='relu')
self.conv3_1 = layers.conv( 128, 64, 3, 1, pooling=True , batchnorm=True, activation='relu')
self.conv3_2 = layers.conv( 64, 256, 1, 0, pooling=False, batchnorm=True, activation='relu')
self.conv4_1 = layers.conv( 256, 128, 3, 1, pooling=True , batchnorm=True, activation='relu')
self.conv4_2 = layers.conv( 128, 64, 3, 1, pooling=False, batchnorm=True, activation='relu')
self.conv5_1 = layers.conv( 64, 128, 1, 0, pooling=True , batchnorm=True, activation='relu')
self.fc = layers.fullyconnected(512, num_classes, output_width_30b=True, pooling=False, batchnorm=False, activation=None)
def forward(self, x):
x = self.conv1_1(x)
x = self.conv1_2(x)
x = self.conv1_3(x)
x = self.conv2_1(x)
x = self.conv2_2(x)
x = self.conv3_1(x)
x = self.conv3_2(x)
x = self.conv4_1(x)
x = self.conv4_2(x)
x = self.conv5_1(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
class maxim_simplenet(nn.Module):
def __init__(
self,
num_classes =100,
num_channels =3,
dimensions =(32, 32),
bias =True,
**kwargs
):
super().__init__()
### Burak: disable word wrap in your editor to see this "table" for conv layers properly
### mark that all layers are 'same' padding.
### input ch | out ch | kernel dim | padding
self.conv1 = layers.conv( num_channels, 16, 3, 1, pooling=False, batchnorm=True, activation='relu')
self.conv2 = layers.conv( 16, 20, 3, 1, pooling=False, batchnorm=True, activation='relu')
self.conv3 = layers.conv( 20, 20, 3, 1, pooling=False, batchnorm=True, activation='relu')
self.conv4 = layers.conv( 20, 20, 3, 1, pooling=False, batchnorm=True, activation='relu')
self.conv5 = layers.conv( 20, 20, 3, 1, pooling=True , batchnorm=True, activation='relu')
self.conv6 = layers.conv( 20, 20, 3, 1, pooling=False, batchnorm=True, activation='relu')
self.conv7 = layers.conv( 20, 44, 3, 1, pooling=False, batchnorm=True, activation='relu')
self.conv8 = layers.conv( 44, 48, 3, 1, pooling=True , batchnorm=True, activation='relu')
self.conv9 = layers.conv( 48, 48, 3, 1, pooling=False, batchnorm=True, activation='relu')
self.conv10= layers.conv( 48, 96, 3, 1, pooling=True , batchnorm=True, activation='relu')
self.conv11= layers.conv( 96, 512, 1, 0, pooling=True , batchnorm=True, activation='relu')
self.conv12= layers.conv( 512, 128, 1, 0, pooling=False, batchnorm=True, activation='relu')
self.conv13= layers.conv( 128, 128, 3, 1, pooling=True , batchnorm=True, activation='relu')
self.conv14= layers.conv( 128, num_classes, 1, 0, output_width_30b=True, pooling=False, batchnorm=False, activation=None)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.conv6(x)
x = self.conv7(x)
x = self.conv8(x)
x = self.conv9(x)
x = self.conv10(x)
x = self.conv11(x)
x = self.conv12(x)
x = self.conv13(x)
x = self.conv14(x)
x = x.view(x.size(0), -1)
return x |