File size: 9,925 Bytes
5096607 4e45d68 5096607 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
###########################################################################
# Computer vision - Binary neural networks demo software by HyperbeeAI. #
# Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected] #
###########################################################################
import torch, matplotlib, os, sys, argparse
import numpy as np
import matplotlib.pyplot as plt
matplotlib.use('Agg')
def generate_histogram_for_quantized_layer(layer_key, layer_weight, layer_bias, checkpoint_type, histograms_folderpath):
histogram_folder_exists = os.path.isdir(histograms_folderpath)
if not histogram_folder_exists:
os.makedirs(histograms_folderpath)
matplotlib.rcParams.update({'font.size': 16})
fig, axs = plt.subplots(1, 2, tight_layout=True, figsize=(20, 10))
ww = layer_weight.flatten();
bb = layer_bias.flatten();
ww_max = np.amax(ww)
ww_min = np.amin(ww)
ww_unq = len(np.unique(ww))
bb_max = np.amax(bb)
bb_min = np.amin(bb)
bb_unq = len(np.unique(bb))
if checkpoint_type=='hardware':
ww_num_bins = ww_unq*3
bb_num_bins = bb_unq*3
ww_max_lim = ww_max+1;
bb_max_lim = bb_max+1/16384;
elif checkpoint_type=='training':
ww_num_bins = min(ww_unq*3,800)
bb_num_bins = min(bb_unq*3,800)
ww_max_lim = ww_max+1/128;
bb_max_lim = bb_max+1/128;
axs[0].grid(True)
axs[0].set_title('weight', fontdict={'fontsize': 22, 'fontweight': 'medium'})
axs[0].hist(ww, range=(ww_min, ww_max_lim), bins=ww_num_bins, align='left')
axs[1].grid(True)
axs[1].set_title('bias', fontdict={'fontsize': 22, 'fontweight': 'medium'})
axs[1].hist(bb, range=(bb_min, bb_max_lim), bins=bb_num_bins, align='left')
filename = os.path.join(histograms_folderpath,layer_key + '.jpg')
plt.savefig(filename)
plt.close()
def main():
parser = argparse.ArgumentParser(description='Print out model statistics file and optionally also save weight/bias histogram figures for each layer')
parser.add_argument('-c','--checkpoint-name', help='Name of folder under the checkpoints folder for which you want to generate a model statistics file', required=True)
parser.add_argument('-q','--checkpoint-type', help='checkpoint type can be either a hardware or training checkpoint.', required=True)
parser.add_argument('-g','--generate-histograms', help='Add this flag if you want to save jpg figures inside the checkpoint folder for histograms of bias and weight values of each layer in the network', action='store_true', default=False, required=False)
args = vars(parser.parse_args())
checkpoint_folder = os.path.join('checkpoints',args['checkpoint_name']);
if(os.path.isdir(checkpoint_folder)):
print('')
print('Found checkpoint folder')
else:
print('')
print('Could not find checkpoint folder. Please check that:')
print('1- you are running this script from the top level of the repository, and')
print('2- the checkpoint folder you gave the name for exists (needs to be created manually)')
sys.exit();
checkpoint_type = args['checkpoint_type']
if(checkpoint_type=='hardware'):
print('')
print('Searching for a hardware_checkpoint.pth.tar')
print('')
check_for_bit_errors = True;
elif(checkpoint_type=='training'):
print('')
print('Searching for a training_checkpoint.pth.tar')
print('')
check_for_bit_errors = False;
else:
print('')
print('Something is wrong, we dont know of a',checkpoint_type, 'checkpoint. Perhaps a misspelling?' )
print('')
sys.exit()
checkpoint_filename = checkpoint_type+'_checkpoint.pth.tar';
a = torch.load(os.path.join(checkpoint_folder,checkpoint_filename))
flag_generate_histograms = args['generate_histograms']
if(flag_generate_histograms):
print('[INFO]: Will generate histograms')
with open(os.path.join(checkpoint_folder,'statistics_'+checkpoint_type+'_checkpoint'), 'w') as f:
print('[INFO]: Generating statistics file')
print('Top:', file=f)
for key in a.keys():
print(' ', key, file=f)
if( 'arch' not in a.keys()):
print('[ERROR]: there is no key named arch in this checkpoint', file=f)
print('[ERROR]: there is no key named arch in this checkpoint')
#sys.exit()
if( 'state_dict' not in a.keys()):
print('[ERROR]: there is no key named state_dict in this checkpoint', file=f)
print('[ERROR]: there is no key named state_dict in this checkpoint')
#sys.exit()
if( 'extras' not in a.keys()):
print('[ERROR]: there is no key named extras in this checkpoint', file=f)
print('[ERROR]: there is no key named extras in this checkpoint')
#sys.exit()
print('-------------------------------------', file=f)
print('arch:', a['arch'], file=f)
print('-------------------------------------', file=f)
print('extras:', a['extras'], file=f)
print('-------------------------------------', file=f)
print('state_dict:', file=f)
layer_keys = []
layers = []
for key in a['state_dict'].keys():
fields = key.split('.')
if(fields[0] not in layer_keys):
layer_keys.append(fields[0])
layers.append({'key': fields[0],
'weight_bits':None,
'bias_bits':None,
'adjust_output_shift':None,
'output_shift':None,
'quantize_activation':None,
'shift_quantile':None,
'weight': None,
'bias':None })
idx = -1
else:
idx = layer_keys.index(fields[0])
if((fields[1]=='weight_bits') or \
(fields[1]=='output_shift') or \
(fields[1]=='bias_bits') or \
(fields[1]=='quantize_activation') \
or (fields[1]=='adjust_output_shift') \
or (fields[1]=='shift_quantile')):
layers[idx][fields[1]] = a['state_dict'][key].cpu().numpy();
elif(fields[1]=='op'):
layers[idx][fields[2]] = a['state_dict'][key].cpu().numpy();
else:
print('[ERROR]: Unknown field. Exiting', file=f)
print('[ERROR]: Unknown field. Exiting')
sys.exit()
for layer in layers:
print(' ', layer['key'], file=f)
print(' output_shift: ', layer['output_shift'], file=f)
print(' adjust_output_shift: ', layer['adjust_output_shift'], file=f)
print(' quantize_activation: ', layer['quantize_activation'], file=f)
print(' shift_quantile: ', layer['shift_quantile'], file=f)
print(' weight bits: ', layer['weight_bits'], file=f)
print(' bias_bits: ', layer['bias_bits'], file=f)
print(' bias', file=f)
print(' total # of elements, shape:', np.size(layer['bias']), ',', list(layer['bias'].shape), file=f)
print(' # of unique elements: ', len(np.unique(layer['bias'])), file=f)
print(' min, max, mean:', np.amin(layer['bias']), ', ', np.amax(layer['bias']), ', ', np.mean(layer['bias']), file=f)
if((len(np.unique(layer['bias'])) > 2**layer['bias_bits']) and (check_for_bit_errors)):
print('', file=f)
print('[WARNING]: # of unique elements in bias tensor is more than that allowed by bias_bits.', file=f)
print(' This might be OK, since Maxim deployment repository right shifts these.', file=f)
print('', file=f)
print('')
print('[WARNING]: # of unique elements in bias tensor is more than that allowed by bias_bits.')
print(' This might be OK, since Maxim deployment repository right shifts these.')
print(' Check stats file for details.')
print('')
print(' weight', file=f)
print(' total # of elements, shape:', np.size(layer['weight']), ',', list(layer['weight'].shape), file=f)
print(' # of unique elements: ', len(np.unique(layer['weight'])), file=f)
print(' min, max, mean:', np.amin(layer['weight']), ', ', np.amax(layer['weight']), ', ', np.mean(layer['weight']), file=f)
if((len(np.unique(layer['weight'])) > 2**layer['weight_bits']) and (check_for_bit_errors)):
print('', file=f)
print('[ERROR]: # of unique elements in weight tensor is more than that allowed by weight_bits.', file=f)
print(' This is definitely not OK, weights are used in HW as is.', file=f)
print(' Exiting.', file=f)
print('', file=f)
print('')
print('[ERROR]: # of unique elements in weight tensor is more than that allowed by weight_bits.')
print(' This is definitely not OK, weights are used in HW as is.')
print(' Exiting.')
print('')
sys.exit()
if(flag_generate_histograms):
generate_histogram_for_quantized_layer(layer['key'], layer['weight'], layer['bias'], checkpoint_type, os.path.join(checkpoint_folder, 'histograms_'+checkpoint_type+'_checkpoint'))
print('[INFO]: saved histograms for layer', layer['key'])
if __name__ == '__main__':
main()
|