--- license: mit --- # Model Card: yolov8x_bb_multi_class_detect_model ## Model Details - **Model Name:** `yolov8x_bb_multi_class_detect_model` - **Model Type:** Multi-Class Object Detection and Classifier - **Description:** This model is designed to detect and classify specific species and genera of bark beetles from images. Unlike single-class models, it has been fine-tuned on a labeled dataset of bark beetle species. --- ## Evaluation Datasets To understand the model's capabilities, its performance was tested on two different types of datasets: - **In-Distribution (ID):** This dataset contains images of species **the model was trained on**. Performance on this dataset shows how well the model identifies familiar species. - **Out-of-Distribution (OOD):** This dataset contains images of species that are **intentionally different from the training data**. Performance here tests the model's ability to handle novel species. --- ## Performance ### Object Detection & Classification The model's performance is measured by its **mean Average Precision (mAP)**. This score reflects the model's accuracy in both locating the beetle (bounding box) and assigning the correct species or genus label. #### Species-Level Performance This evaluates the model's ability to identify individual species. | Dataset | Species mAP (0.50 : 0.95) | Notes | | :--- | :--- | :--- | | **In-Distribution (ID)** | 🟩 0.8951 | High overall accuracy, but performance on a few specific species is low. | | **Out-of-Distribution (OOD)**| 🟥 0.0000 | As expected, the model cannot classify species it has not been trained on. |
Click to see Per-Species Performance (ID Dataset) *The following list is sorted by Average Precision (AP) from lowest to highest to highlight the most challenging species for the model to identify.* | Species | AP Score | | :--- | :--- | | Dendroctonus_rufipennis | 0.1933 | | Scolytus_multistriatus | 0.2222 | | Dryocoetes_autographus | 0.2976 | | Ips_grandicollis | 0.3333 | | Euwallacea_validus | 0.3889 | | Hylesinus_aculeatus | 0.4359 | | Orthotomicus_caelatus | 0.5556 | | Xyleborus_celsus | 0.5930 | | Hypothenemus_hampei | 0.6999 | | Ambrosiodmus_minor | 0.8182 | | Trypodendron_domesticum | 0.9077 | | Pityogenes_chalcographus | 0.9058 | | Ambrosiophilus_atratus | 0.9043 | | Hylurgus_ligniperda | 0.9333 | | Taphrorychus_bicolor | 0.9549 | | Ips_sexdentatus | 0.9615 | | Ips_typographus | 0.9654 | | Scolytus_schevyrewi | 0.9672 | | Anisandrus_dispar | 0.9686 | | Xylosandrus_crassiusculus | 0.9722 | | Pagiocerus_frontalis | 0.9749 | | Xyleborus_ferrugineus | 0.9751 | | Dendroctonus_terebrans | 0.9751 | | Monarthrum_mali | 0.9777 | | Ips_calligraphus | 0.9798 | | Orthotomicus_erosus | 0.9806 | | Cryptocarenus_heveae | 0.9810 | | Monarthrum_fasciatum | 0.9811 | | Hylesinus_crenatus | 0.9818 | | Xylosandrus_compactus | 0.9816 | | Dendroctonus_valens | 0.9821 | | Coccotrypes_dactyliperda | 0.9823 | | Ips_avulsus | 0.9824 | | Euwallacea_fornicatus | 0.9827 | | Xylosandrus_amputatus | 0.9836 | | Xyleborinus_saxesenii | 0.9846 | | Xyleborus_glabratus | 0.9851 | | Cnestus_mutilatus | 0.9854 | | Cyclorhipidion_pelliculosum | 0.9864 | | Euplatypus_compositus | 0.9872 | | Hylesinus_toranio | 0.9890 | | Hylurgops_palliatus | 0.9902 | | Pityophthorus_juglandis | 0.9914 | | Xyleborus_affinis | 0.9917 | | Hylesinus_varius | 0.9921 | | Myoplatypus_flavicornis | 0.9947 | | Anisandrus_sayi | 0.9957 | | Ctonoxylon_hagedorn | 0.9958 | | Euwallacea_perbrevis | 0.9960 | | Scolytodes_glaber | 0.9963 | | Platypus_cylindrus | 0.9979 | | Phloeosinus_dentatus | 0.9981 | | Pycnarthrum_hispidium | 0.9998 | | Hylastes_porculus | 0.9996 | | Ips_duplicatus | 0.9997 | | Ips_acuminatus | 0.9999 | | Coptoborus_ricini | 1.0000 | | Platypus_koryoensis | 1.0000 | | Xylosandrus_morigerus | 1.0000 | | Tomicus_destruens | 1.0000 | | Hylastes_salebrosus | 1.0000 | | Coccotrypes_carpophagus | 0.8956 |
--- #### Genus-Level Performance This evaluates the model's ability to identify the genus, a broader taxonomic rank than species. | Dataset | Genus mAP (0.50 : 0.95) | Notes | | :--- | :--- | :--- | | **In-Distribution (ID)** | 🟩 0.9646 | Exceptional performance on genera the model was trained to recognize. | | **Out-of-Distribution (OOD)**| 🟩 0.7911 | Very strong generalization, successfully classifying many unseen genera with high accuracy. |
Click to see Per-Genus Performance (ID and OOD Datasets) *The following lists are sorted by Average Precision (AP) from lowest to highest to highlight the most challenging genera for the model to identify.* **In-Distribution (ID) Genus Performance** | Genus | AP Score | | :--- | :--- | | Dryocoetes | 0.7750 | | Hypothenemus | 0.8129 | | Trypodendron | 0.8812 | | Cryptocarenus | 0.9476 | | Orthotomicus | 0.9471 | | Scolytus | 0.9457 | | Pityogenes | 0.9500 | | Hylurgus | 0.9541 | | Xylosandrus | 0.9554 | | Xyleborinus | 0.9575 | | Taphrorychus | 0.9613 | | Pityophthorus | 0.9652 | | Scolytodes | 0.9671 | | Monarthrum | 0.9674 | | Coptoborus | 0.9678 | | Coccotrypes | 0.9712 | | Cnestus | 0.9753 | | Xyleborus | 0.9760 | | Euwallacea | 0.9786 | | Dendroctonus | 0.9817 | | Ips | 0.9844 | | Phloeosinus | 0.9848 | | Anisandrus | 0.9856 | | Pycnarthrum | 0.9879 | | Hylurgops | 0.9903 | | Hylesinus | 0.9939 | | Platypus | 0.9934 | | Ctonoxylon | 0.9941 | | Pagiocerus | 0.9942 | | Myoplatypus | 0.9968 | | Tomicus | 0.9990 | | Ambrosiophilus | 0.9927 | | Euplatypus | 0.9924 | | Hylastes | 0.9996 | | Cyclorhipidion | 0.9989 | | Ambrosiodmus | 1.0000 |
**Out-of-Distribution (OOD) Genus Performance** | Genus | AP Score | | :--- | :--- | | Cryphalus | 0.1572 | | Dactylotrypes | 0.3231 | | Pityogenes | 0.5115 | | Scolytus | 0.5880 | | Platypus | 0.6143 | | Cryptocarenus | 0.6125 | | Dendroctonus | 0.6267 | | Hypothenemus | 0.6354 | | Polygraphus | 0.6333 | | Crypturgus | 0.6538 | | Stegomerus | 0.6632 | | Wallacellus | 0.6800 | | Beaverium | 0.7091 | | Monarthrum | 0.7179 | | Leptoxyleborus | 0.7294 | | Dendroterus | 0.7400 | | Cyclorhipidion | 0.7522 | | Crossotarsus | 0.7588 | | Cnesinus | 0.7615 | | Pycnarthrum | 0.7667 | | Pityoborus | 0.7667 | | Dryocoetes | 0.7778 | | Gnathotrichus | 0.7815 | | Eccoptopterus | 0.7833 | | Coptoborus | 0.8143 | | Ambrosiodmus | 0.8143 | | Trypodendron | 0.8205 | | Microperus | 0.8244 | | Ips | 0.8273 | | Metacorthylus | 0.8286 | | Premnobius | 0.8286 | | Diuncus | 0.8283 | | Webbia | 0.8333 | | Dinoplatypus | 0.8389 | | Cnestus | 0.8438 | | Xyleborus | 0.8479 | | Xyloterinus | 0.8500 | | Hylastes | 0.8667 | | Chaetoptelius | 0.8676 | | Euwallacea | 0.8671 | | Xylocleptes | 0.8692 | | Xyleborinus | 0.8802 | | Debus | 0.8821 | | Eidophelus | 0.8877 | | Pseudowebbia | 0.8917 | | Tricosa | 0.9000 | | Truncaudum | 0.9212 | | Hylocurus | 0.9201 | | Anisandrus | 0.9345 | | Hadrodemius | 0.9375 | | Ernoporus | 0.9352 | | Tomicus | 0.9455 | | Carphoborus | 0.9458 | | Pseudopityophthorus | 0.9463 | | Pityophthorus | 0.9850 | | Hylurgus | 0.9806 | | Procryphalus | 0.9846 | | Heteroborips | 0.9933 |
--- ### Feature Extraction (Embedding Performance) The quality of the model's learned feature representations (embeddings) is evaluated by how well they group similar species together. #### Internal Cluster Validation These metrics measure the quality of the clusters formed by the embeddings without referring to ground-truth labels. | Metric | ID Score | OOD Score | Interpretation | | :--- | :--- | :--- | :--- | | **Silhouette Score** | 0.7865 | 0.3977 | Measures how similar an object is to its own cluster compared to others. **Higher is better (closer to 1)**. The ID embeddings form exceptional, well-defined clusters. | | **Davies-Bouldin Index**| 0.3468 | 0.3520 | Measures the average similarity between each cluster and its most similar one. **Lower is better (closer to 0)**. Both embeddings show very little overlap between clusters. | | **Calinski-Harabasz Index**| 10088.3 | 1129.94 | Measures the ratio of between-cluster dispersion to within-cluster dispersion. **Higher is better**. The ID embeddings form exceptionally dense and well-separated clusters. | #### External Cluster Validation These metrics evaluate the clustering performance by comparing the results to the true species labels. | Metric | ID Score | OOD Score | Interpretation | | :--- | :--- | :--- | :--- | | **Adjusted Rand Index (ARI)** | 0.5876 | 0.0061 | Measures the similarity between true and predicted labels, correcting for chance. **Higher is better (closer to 1)**. | | **Normalized Mutual Info (NMI)** | 0.7399 | 0.3029 | Measures the agreement between the clustering and the true labels. **Higher is better (closer to 1)**. | | **Cluster Purity** | 0.6835 | 0.1658 | Measures the extent to which clusters contain a single class. **Higher is better (closer to 1)**. | **Conclusion:** The exceptionally high external validation scores (especially ARI and NMI) for the ID dataset show that this model's feature representations are **highly effective** at separating the different species it was trained on. #### Phylogenetic Correlation (Mantel Test) This test determines if the model's learned features correlate with the evolutionary relationships (phylogeny) between different bark beetle species. | Dataset | Mantel R-statistic | p-value | Interpretation | | :--- | :--- | :--- | :--- | | **In-Distribution (ID)** | -0.1305 | 0.2170 | There is **no statistically significant correlation** between the model's features and the species' evolutionary history. | | **Out-of-Distribution (OOD)**| -0.0695 | 0.3260 | There is **no statistically significant correlation** for the OOD data either. |