fernandogd97 commited on
Commit
aa7c8a9
verified
1 Parent(s): 4719fac

Add model card

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language: es
4
+ tags:
5
+ - biomedical
6
+ - spanish
7
+ - entity-linking
8
+ - sapbert
9
+ - bi-encoder
10
+ - umls
11
+ - knowledge-graph
12
+ - clinical
13
+ ---
14
+
15
+ # ClinLinker-KB-P
16
+
17
+ **ClinLinker-KB-P** enhances ClinLinker by leveraging hierarchical relations from the UMLS knowledge graph. It includes not only synonyms but also their **parent concepts** as positive training pairs, enabling more robust semantic generalization.
18
+
19
+ ## 馃 Training Details
20
+
21
+ - Base model: `PlanTL-GOB-ES/roberta-base-biomedical-clinical-es`
22
+ - Data: UMLS Spanish concepts + `parent_of` relations
23
+ - Strategy: Contrastive training with concept parents as positives
24
+
25
+ ## 馃摎 Citation
26
+
27
+ > Gallego, Fernando, et al. "Clinlinker-Kb: Clinical Entity Linking in Spanish with Knowledge-Graph Enhanced Biencoders." Available at SSRN 4939986.
28
+
29
+ ## 馃挕 Recommended Usage
30
+
31
+ We recommend using this model together with:
32
+
33
+ - [Faiss](https://github.com/facebookresearch/faiss)
34
+ - Or the `FaissEncoder` from [ICB-UMA/KnowledgeGraph](https://github.com/ICB-UMA/KnowledgeGraph)
35
+
36
+ ## 馃摎 Citation
37
+
38
+ > Gallego, Fernando and L贸pez-Garc铆a, Guillermo and Gasco, Luis and Krallinger, Martin and Veredas, Francisco J., Clinlinker-Kb: Clinical Entity Linking in Spanish with Knowledge-Graph Enhanced Biencoders. Available at SSRN:http://dx.doi.org/10.2139/ssrn.4939986
39
+
40
+ ## 馃挕 Recommended Usage
41
+
42
+ We recommend using this model together with:
43
+
44
+ - [Faiss](https://github.com/facebookresearch/faiss) for similarity search
45
+ - Or the `FaissEncoder` utility available at [ICB-UMA/KnowledgeGraph](https://github.com/ICB-UMA/KnowledgeGraph)
46
+
47
+ ## 馃И Example: Encoding a Spanish Mention
48
+
49
+ ```python
50
+ from transformers import AutoTokenizer, AutoModel
51
+ import torch
52
+
53
+ tokenizer = AutoTokenizer.from_pretrained("ICB-UMA/ClinLinker-KB-P")
54
+ model = AutoModel.from_pretrained("ICB-UMA/ClinLinker-KB-P")
55
+
56
+ mention = "insuficiencia renal aguda"
57
+ inputs = tokenizer(mention, return_tensors="pt", padding=True, truncation=True)
58
+ with torch.no_grad():
59
+ outputs = model(**inputs)
60
+ embedding = outputs.last_hidden_state[:, 0, :] # CLS token
61
+
62
+ print(embedding.shape)
63
+