FLAIR-HUB -- Land-Cover mapping models (LC)
Collection
17 items
•
Updated
- Model architecture: convnextv2_tiny-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
- default: 1.0
- masked classes: [clear cut, ligneous, mixed, other] → weight = 0
- Input channels:
- AERIAL_RGBI : [4,1,2]
- Input normalization (custom):
- AERIAL_RGBI:
mean: [106.59, 105.66, 111.35]
std: [39.78, 52.23, 45.62]
- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Metric | Value |
---|---|
mIoU | 62.73% |
Overall Accuracy | 76.43% |
F-score | 75.87% |
Precision | 76.22% |
Recall | 75.72% |
Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
building | 82.57 | 90.45 | 90.96 | 89.94 |
greenhouse | 75.29 | 85.90 | 83.32 | 88.66 |
swimming pool | 59.06 | 74.26 | 75.33 | 73.23 |
impervious surface | 73.77 | 84.90 | 85.42 | 84.40 |
pervious surface | 55.14 | 71.08 | 70.18 | 72.00 |
bare soil | 60.20 | 75.15 | 72.82 | 77.64 |
water | 88.60 | 93.95 | 95.09 | 92.85 |
snow | 64.81 | 78.65 | 87.46 | 71.45 |
herbaceous vegetation | 53.20 | 69.45 | 70.50 | 68.43 |
agricultural land | 55.83 | 71.65 | 69.34 | 74.12 |
plowed land | 35.34 | 52.23 | 50.89 | 53.63 |
vineyard | 76.05 | 86.40 | 84.28 | 88.62 |
deciduous | 70.93 | 82.99 | 81.83 | 84.19 |
coniferous | 60.60 | 75.47 | 78.67 | 72.52 |
brushwood | 29.50 | 45.56 | 47.15 | 44.09 |
Aerial ROI
Inference ROI
BibTeX:
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
APA:
Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080