IGNF
/

🌐 FLAIR-HUB Model Collection

  • Trained on: FLAIR-HUB dataset 🔗
  • Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
  • Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
  • Decoders: UNet, UPerNet
  • Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
  • Class nomenclature: 15 classes for LC, 23 classes for LPIS
🆔
Model ID
🗺️
Land-cover
🌾
Crop-types
🛩️
Aerial
⛰️
Elevation
🛰️
SPOT
🛰️
S2 t.s.
🛰️
S1 t.s.
🛩️
Historical
LC-A
LC-D
LC-F
LC-G
LC-I
LC-L
LPIS-A
LPIS-F
LPIS-I
LPIS-J

🔍 Model: FLAIR-HUB_LC-A_convnextv2tiny-upernet

  • Encoder: convnextv2_tiny
  • Decoder: upernet
  • Metrics:
  • mIoU O.A. F-score Precision Recall
    62.73% 76.43% 75.87% 76.22% 75.72%
  • Params.: 29.8

General Informations


Training Config Hyperparameters

- Model architecture: convnextv2_tiny-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
    - default: 1.0
    - masked classes: [clear cut, ligneous, mixed, other]  weight = 0
- Input channels:
    - AERIAL_RGBI : [4,1,2]
- Input normalization (custom):
    - AERIAL_RGBI:
        mean: [106.59, 105.66, 111.35]
        std:  [39.78, 52.23, 45.62]

Training Data

- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Classes distribution.

Training Logging

Training logging.

Metrics

Metric Value
mIoU 62.73%
Overall Accuracy 76.43%
F-score 75.87%
Precision 76.22%
Recall 75.72%
Class IoU (%) F-score (%) Precision (%) Recall (%)
building 82.57 90.45 90.96 89.94
greenhouse 75.29 85.90 83.32 88.66
swimming pool 59.06 74.26 75.33 73.23
impervious surface 73.77 84.90 85.42 84.40
pervious surface 55.14 71.08 70.18 72.00
bare soil 60.20 75.15 72.82 77.64
water 88.60 93.95 95.09 92.85
snow 64.81 78.65 87.46 71.45
herbaceous vegetation 53.20 69.45 70.50 68.43
agricultural land 55.83 71.65 69.34 74.12
plowed land 35.34 52.23 50.89 53.63
vineyard 76.05 86.40 84.28 88.62
deciduous 70.93 82.99 81.83 84.19
coniferous 60.60 75.47 78.67 72.52
brushwood 29.50 45.56 47.15 44.09

Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE

Cite

BibTeX:

@article{ign2025flairhub,
  doi = {10.48550/arXiv.2506.07080},
  url = {https://arxiv.org/abs/2506.07080},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}

APA:

Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). 
DOI: https://doi.org/10.48550/arXiv.2506.07080
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including IGNF/FLAIR-HUB_LC-A_IR_convnextv2tiny-upernet

Evaluation results