dipteshkanojia commited on
Commit
62581f3
1 Parent(s): 7c21c88

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: roberta-large-finetuned-ours-DS
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # roberta-large-finetuned-ours-DS
19
+
20
+ This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.8358
23
+ - Accuracy: 0.71
24
+ - Precision: 0.6611
25
+ - Recall: 0.6691
26
+ - F1: 0.6570
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 1e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 43
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 20
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
57
+ | 1.0561 | 0.99 | 99 | 0.8773 | 0.615 | 0.4054 | 0.5584 | 0.4591 |
58
+ | 0.762 | 1.98 | 198 | 0.6514 | 0.715 | 0.6735 | 0.6672 | 0.6588 |
59
+ | 0.5661 | 2.97 | 297 | 0.6806 | 0.71 | 0.6764 | 0.6608 | 0.6435 |
60
+ | 0.3699 | 3.96 | 396 | 0.8358 | 0.71 | 0.6611 | 0.6691 | 0.6570 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.20.1
66
+ - Pytorch 1.10.1+cu111
67
+ - Datasets 2.3.2
68
+ - Tokenizers 0.12.1