--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-large-finetuned-ours-DS results: [] --- # roberta-large-finetuned-ours-DS This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3369 - Accuracy: 0.75 - Precision: 0.7054 - Recall: 0.6949 - F1: 0.6974 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0561 | 0.99 | 99 | 0.8773 | 0.615 | 0.4054 | 0.5584 | 0.4591 | | 0.762 | 1.98 | 198 | 0.6514 | 0.715 | 0.6735 | 0.6672 | 0.6588 | | 0.5661 | 2.97 | 297 | 0.6806 | 0.71 | 0.6764 | 0.6608 | 0.6435 | | 0.3699 | 3.96 | 396 | 0.8358 | 0.71 | 0.6611 | 0.6691 | 0.6570 | | 0.2184 | 4.95 | 495 | 1.1627 | 0.7 | 0.6597 | 0.6337 | 0.6414 | | 0.1743 | 5.94 | 594 | 1.0544 | 0.725 | 0.6831 | 0.6949 | 0.6831 | | 0.098 | 6.93 | 693 | 1.4757 | 0.73 | 0.6885 | 0.6902 | 0.6892 | | 0.0813 | 7.92 | 792 | 1.8146 | 0.73 | 0.6840 | 0.6772 | 0.6800 | | 0.0435 | 8.91 | 891 | 1.6697 | 0.755 | 0.7141 | 0.7127 | 0.7132 | | 0.0209 | 9.9 | 990 | 1.8931 | 0.755 | 0.7102 | 0.7070 | 0.7082 | | 0.0201 | 10.89 | 1089 | 2.1934 | 0.74 | 0.6971 | 0.6866 | 0.6907 | | 0.0095 | 11.88 | 1188 | 2.1389 | 0.75 | 0.7014 | 0.6915 | 0.6932 | | 0.0141 | 12.87 | 1287 | 2.1902 | 0.74 | 0.6942 | 0.6943 | 0.6936 | | 0.0112 | 13.86 | 1386 | 2.5021 | 0.73 | 0.6889 | 0.6669 | 0.6741 | | 0.0054 | 14.85 | 1485 | 2.3840 | 0.73 | 0.6819 | 0.6715 | 0.6746 | | 0.0088 | 15.84 | 1584 | 2.3224 | 0.74 | 0.6909 | 0.6825 | 0.6787 | | 0.003 | 16.83 | 1683 | 2.2641 | 0.75 | 0.7054 | 0.6949 | 0.6974 | | 0.0017 | 17.82 | 1782 | 2.3361 | 0.75 | 0.7077 | 0.6968 | 0.7012 | | 0.0014 | 18.81 | 1881 | 2.3041 | 0.755 | 0.7131 | 0.7009 | 0.7051 | | 0.0083 | 19.8 | 1980 | 2.3369 | 0.75 | 0.7054 | 0.6949 | 0.6974 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1