|
|
"""Tokenization classes for IQuestCoder.""" |
|
|
|
|
|
import os |
|
|
from shutil import copyfile |
|
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
|
|
import sentencepiece as spm |
|
|
|
|
|
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer |
|
|
from transformers.utils import logging |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"} |
|
|
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
|
"vocab_file": {}, |
|
|
"tokenizer_file": {}, |
|
|
} |
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {} |
|
|
|
|
|
|
|
|
|
|
|
class IQuestCoderTokenizer(PreTrainedTokenizer): |
|
|
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_file, |
|
|
unk_token="<unk>", |
|
|
bos_token="<s>", |
|
|
eos_token="</s>", |
|
|
pad_token=None, |
|
|
sp_model_kwargs: Optional[Dict[str, Any]] = None, |
|
|
add_bos_token=True, |
|
|
add_eos_token=False, |
|
|
clean_up_tokenization_spaces=False, |
|
|
add_prefix_space=False, |
|
|
legacy=None, |
|
|
use_default_system_prompt=False, |
|
|
chat_template=None, |
|
|
**kwargs, |
|
|
): |
|
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs |
|
|
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token |
|
|
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token |
|
|
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token |
|
|
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token |
|
|
|
|
|
|
|
|
if legacy is None: |
|
|
logger.warning_once( |
|
|
f"You are using the default legacy behaviour of the {self.__class__.__name__}. This is" |
|
|
" expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you." |
|
|
" If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it" |
|
|
" means, and thoroughly read the reason why this was added as explained in" |
|
|
" https://github.com/huggingface/transformers/pull/24565" |
|
|
) |
|
|
legacy = True |
|
|
|
|
|
self.legacy = legacy |
|
|
self.vocab_file = vocab_file |
|
|
self.add_bos_token = add_bos_token |
|
|
self.add_eos_token = add_eos_token |
|
|
self.add_prefix_space = add_prefix_space |
|
|
self.use_default_system_prompt = use_default_system_prompt |
|
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
|
self.sp_model.Load(vocab_file) |
|
|
|
|
|
|
|
|
|
|
|
super().__init__( |
|
|
bos_token=bos_token, |
|
|
eos_token=eos_token, |
|
|
unk_token=unk_token, |
|
|
pad_token=pad_token, |
|
|
add_bos_token=add_bos_token, |
|
|
add_eos_token=add_eos_token, |
|
|
sp_model_kwargs=self.sp_model_kwargs, |
|
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
|
add_prefix_space=add_prefix_space, |
|
|
legacy=legacy, |
|
|
use_default_system_prompt=use_default_system_prompt, |
|
|
chat_template=chat_template, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
def __getstate__(self): |
|
|
state = self.__dict__.copy() |
|
|
state["sp_model"] = None |
|
|
return state |
|
|
|
|
|
def __setstate__(self, d): |
|
|
self.__dict__ = d |
|
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
|
self.sp_model.Load(self.vocab_file) |
|
|
|
|
|
@property |
|
|
def vocab_size(self) -> int: |
|
|
"""Returns the vocabulary size.""" |
|
|
return self.sp_model.get_piece_size() |
|
|
|
|
|
def get_vocab(self) -> Dict[str, int]: |
|
|
"""Returns the vocabulary as a dictionary of token to index.""" |
|
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} |
|
|
vocab.update(self.added_tokens_encoder) |
|
|
return vocab |
|
|
|
|
|
def _tokenize(self, text: str) -> List[str]: |
|
|
""" |
|
|
Tokenize a string. |
|
|
|
|
|
Args: |
|
|
text (`str`): The text to tokenize. |
|
|
|
|
|
Returns: |
|
|
`List[str]`: The list of tokens. |
|
|
""" |
|
|
if self.add_prefix_space: |
|
|
text = " " + text |
|
|
|
|
|
if self.legacy: |
|
|
return self.sp_model.encode(text, out_type=str) |
|
|
|
|
|
|
|
|
return self.sp_model.encode(text, out_type=str) |
|
|
|
|
|
def _convert_token_to_id(self, token: str) -> int: |
|
|
"""Converts a token (str) to an id using the vocab.""" |
|
|
return self.sp_model.piece_to_id(token) |
|
|
|
|
|
def _convert_id_to_token(self, index: int) -> str: |
|
|
"""Converts an index (integer) to a token (str) using the vocab.""" |
|
|
token = self.sp_model.IdToPiece(index) |
|
|
return token |
|
|
|
|
|
def convert_tokens_to_string(self, tokens: List[str]) -> str: |
|
|
""" |
|
|
Converts a sequence of tokens (strings) to a single string. |
|
|
|
|
|
This method handles special tokens separately to ensure they are not |
|
|
decoded using the SentencePiece model. |
|
|
|
|
|
Args: |
|
|
tokens (`List[str]`): The list of tokens to convert. |
|
|
|
|
|
Returns: |
|
|
`str`: The decoded string. |
|
|
""" |
|
|
current_sub_tokens = [] |
|
|
out_string = "" |
|
|
prev_is_special = False |
|
|
for i, token in enumerate(tokens): |
|
|
|
|
|
if token in self.all_special_tokens: |
|
|
if not prev_is_special and i != 0: |
|
|
out_string += " " |
|
|
out_string += self.sp_model.decode(current_sub_tokens) + token |
|
|
prev_is_special = True |
|
|
current_sub_tokens = [] |
|
|
else: |
|
|
current_sub_tokens.append(token) |
|
|
prev_is_special = False |
|
|
out_string += self.sp_model.decode(current_sub_tokens) |
|
|
return out_string |
|
|
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
|
""" |
|
|
Save the vocabulary and special tokens file to a directory. |
|
|
|
|
|
Args: |
|
|
save_directory (`str`): |
|
|
The directory in which to save the vocabulary. |
|
|
filename_prefix (`str`, *optional*): |
|
|
An optional prefix to add to the named of the saved files. |
|
|
|
|
|
Returns: |
|
|
`Tuple(str)`: Paths to the files saved. |
|
|
""" |
|
|
if not os.path.isdir(save_directory): |
|
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
|
return |
|
|
out_vocab_file = os.path.join( |
|
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
|
) |
|
|
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): |
|
|
copyfile(self.vocab_file, out_vocab_file) |
|
|
elif not os.path.isfile(self.vocab_file): |
|
|
with open(out_vocab_file, "wb") as fi: |
|
|
content_spiece_model = self.sp_model.serialized_model_proto() |
|
|
fi.write(content_spiece_model) |
|
|
|
|
|
return (out_vocab_file,) |
|
|
|
|
|
def build_inputs_with_special_tokens( |
|
|
self, |
|
|
token_ids_0: List[int], |
|
|
token_ids_1: Optional[List[int]] = None |
|
|
) -> List[int]: |
|
|
""" |
|
|
Build model inputs from a sequence or a pair of sequences for sequence classification tasks by concatenating |
|
|
and adding special tokens. |
|
|
|
|
|
An IQuestCoder sequence has the following format: |
|
|
|
|
|
- single sequence: `<s> X </s>` (if add_eos_token is True) or `<s> X` (default) |
|
|
- pair of sequences: `<s> A </s> <s> B </s>` (if add_eos_token is True) or `<s> A <s> B` (default) |
|
|
|
|
|
Args: |
|
|
token_ids_0 (`List[int]`): |
|
|
List of IDs to which the special tokens will be added. |
|
|
token_ids_1 (`List[int]`, *optional*): |
|
|
Optional second list of IDs for sequence pairs. |
|
|
|
|
|
Returns: |
|
|
`List[int]`: List of input IDs with the appropriate special tokens. |
|
|
""" |
|
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] |
|
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] |
|
|
|
|
|
output = bos_token_id + token_ids_0 + eos_token_id |
|
|
|
|
|
if token_ids_1 is not None: |
|
|
output = output + bos_token_id + token_ids_1 + eos_token_id |
|
|
|
|
|
return output |
|
|
|
|
|
def get_special_tokens_mask( |
|
|
self, |
|
|
token_ids_0: List[int], |
|
|
token_ids_1: Optional[List[int]] = None, |
|
|
already_has_special_tokens: bool = False |
|
|
) -> List[int]: |
|
|
""" |
|
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
|
special tokens using the tokenizer `prepare_for_model` method. |
|
|
|
|
|
Args: |
|
|
token_ids_0 (`List[int]`): |
|
|
List of IDs. |
|
|
token_ids_1 (`List[int]`, *optional*): |
|
|
Optional second list of IDs for sequence pairs. |
|
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
|
|
Returns: |
|
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
|
""" |
|
|
if already_has_special_tokens: |
|
|
return super().get_special_tokens_mask( |
|
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
|
) |
|
|
|
|
|
bos_token_id = [1] if self.add_bos_token else [] |
|
|
eos_token_id = [1] if self.add_eos_token else [] |
|
|
|
|
|
if token_ids_1 is None: |
|
|
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id |
|
|
return ( |
|
|
bos_token_id |
|
|
+ ([0] * len(token_ids_0)) |
|
|
+ eos_token_id |
|
|
+ bos_token_id |
|
|
+ ([0] * len(token_ids_1)) |
|
|
+ eos_token_id |
|
|
) |
|
|
|
|
|
def create_token_type_ids_from_sequences( |
|
|
self, |
|
|
token_ids_0: List[int], |
|
|
token_ids_1: Optional[List[int]] = None |
|
|
) -> List[int]: |
|
|
""" |
|
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. |
|
|
|
|
|
An IQuestCoder sequence pair mask has the following format: |
|
|
|
|
|
``` |
|
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 |
|
|
| first sequence | second sequence | |
|
|
``` |
|
|
|
|
|
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). |
|
|
|
|
|
Args: |
|
|
token_ids_0 (`List[int]`): |
|
|
List of IDs. |
|
|
token_ids_1 (`List[int]`, *optional*): |
|
|
Optional second list of IDs for sequence pairs. |
|
|
|
|
|
Returns: |
|
|
`List[int]`: List of token type IDs according to the given sequence(s). |
|
|
""" |
|
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] |
|
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] |
|
|
|
|
|
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) |
|
|
|
|
|
if token_ids_1 is not None: |
|
|
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) |
|
|
|
|
|
return output |
|
|
|
|
|
@property |
|
|
def default_chat_template(self) -> str: |
|
|
""" |
|
|
Returns the default chat template for IQuestCoder. |
|
|
|
|
|
This template formats conversations with system, user, and assistant roles. |
|
|
""" |
|
|
return DEFAULT_CHAT_TEMPLATE |
|
|
|
|
|
def apply_chat_template( |
|
|
self, |
|
|
conversation: Union[List[Dict[str, str]], "Conversation"], |
|
|
chat_template: Optional[str] = None, |
|
|
add_generation_prompt: bool = False, |
|
|
tokenize: bool = True, |
|
|
padding: bool = False, |
|
|
truncation: bool = False, |
|
|
max_length: Optional[int] = None, |
|
|
return_tensors: Optional[str] = None, |
|
|
return_dict: bool = False, |
|
|
**tokenizer_kwargs, |
|
|
): |
|
|
""" |
|
|
Apply a chat template to format a conversation. |
|
|
|
|
|
Args: |
|
|
conversation (`List[Dict[str, str]]` or `Conversation`): |
|
|
A list of dicts with "role" and "content" keys, representing the conversation history. |
|
|
chat_template (`str`, *optional*): |
|
|
A Jinja template to use for formatting. If not provided, the tokenizer's default will be used. |
|
|
add_generation_prompt (`bool`, *optional*, defaults to `False`): |
|
|
Whether to add a generation prompt at the end for the assistant to continue. |
|
|
tokenize (`bool`, *optional*, defaults to `True`): |
|
|
Whether to tokenize the output. If `False`, returns a string. |
|
|
padding (`bool`, *optional*, defaults to `False`): |
|
|
Whether to pad sequences. |
|
|
truncation (`bool`, *optional*, defaults to `False`): |
|
|
Whether to truncate sequences. |
|
|
max_length (`int`, *optional*): |
|
|
Maximum length of the output. |
|
|
return_tensors (`str`, *optional*): |
|
|
The type of tensors to return ("pt", "tf", "np", or None). |
|
|
return_dict (`bool`, *optional*, defaults to `False`): |
|
|
Whether to return a dictionary with additional information. |
|
|
**tokenizer_kwargs: |
|
|
Additional keyword arguments passed to the tokenizer. |
|
|
|
|
|
Returns: |
|
|
`Union[str, List[int], BatchEncoding]`: The formatted (and optionally tokenized) conversation. |
|
|
|
|
|
Example: |
|
|
```python |
|
|
>>> tokenizer = IQuestCoderTokenizer.from_pretrained("path/to/model") |
|
|
>>> conversation = [ |
|
|
... {"role": "system", "content": "You are a helpful assistant."}, |
|
|
... {"role": "user", "content": "Hello!"}, |
|
|
... {"role": "assistant", "content": "Hi there! How can I help you today?"}, |
|
|
... {"role": "user", "content": "What's the weather like?"}, |
|
|
... ] |
|
|
>>> tokenizer.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) |
|
|
'<|system|>\\nYou are a helpful assistant.\\n</|system|><|user|>\\nHello!\\n</|user|>...' |
|
|
``` |
|
|
""" |
|
|
|
|
|
return super().apply_chat_template( |
|
|
conversation, |
|
|
chat_template=chat_template, |
|
|
add_generation_prompt=add_generation_prompt, |
|
|
tokenize=tokenize, |
|
|
padding=padding, |
|
|
truncation=truncation, |
|
|
max_length=max_length, |
|
|
return_tensors=return_tensors, |
|
|
return_dict=return_dict, |
|
|
**tokenizer_kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
from transformers import PreTrainedTokenizerFast |
|
|
from tokenizers import Tokenizer, decoders, models, normalizers, pre_tokenizers, processors |
|
|
|
|
|
class IQuestCoderTokenizerFast(PreTrainedTokenizerFast): |
|
|
""" |
|
|
Construct a "fast" IQuestCoder tokenizer (backed by HuggingFace's *tokenizers* library). |
|
|
|
|
|
This is a fast implementation of [`IQuestCoderTokenizer`] using the 🤗 Tokenizers library. |
|
|
|
|
|
Args: |
|
|
vocab_file (`str`, *optional*): |
|
|
Path to the vocabulary file (SentencePiece model). |
|
|
tokenizer_file (`str`, *optional*): |
|
|
Path to a tokenizer JSON file. |
|
|
unk_token (`str`, *optional*, defaults to `"<unk>"`): |
|
|
The unknown token. |
|
|
bos_token (`str`, *optional*, defaults to `"<s>"`): |
|
|
The beginning of sequence token. |
|
|
eos_token (`str`, *optional*, defaults to `"</s>"`): |
|
|
The end of sequence token. |
|
|
pad_token (`str`, *optional*): |
|
|
The token used for padding. |
|
|
add_bos_token (`bool`, *optional*, defaults to `True`): |
|
|
Whether to add a BOS token at the start of sequences. |
|
|
add_eos_token (`bool`, *optional*, defaults to `False`): |
|
|
Whether to add an EOS token at the end of sequences. |
|
|
add_prefix_space (`bool`, *optional*, defaults to `False`): |
|
|
Whether to add an initial space to the input. |
|
|
use_default_system_prompt (`bool`, *optional*, defaults to `False`): |
|
|
Whether to use the default system prompt. |
|
|
chat_template (`str`, *optional*): |
|
|
A Jinja template for formatting conversations. |
|
|
|
|
|
Example: |
|
|
```python |
|
|
>>> from tokenization_iquestcoder import IQuestCoderTokenizerFast |
|
|
|
|
|
>>> tokenizer = IQuestCoderTokenizerFast.from_pretrained("path/to/model") |
|
|
>>> tokenizer.encode("Hello, world!") |
|
|
[1, 15043, 29892, 3186, 29991] |
|
|
``` |
|
|
""" |
|
|
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
slow_tokenizer_class = IQuestCoderTokenizer |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_file=None, |
|
|
tokenizer_file=None, |
|
|
unk_token="<unk>", |
|
|
bos_token="<s>", |
|
|
eos_token="</s>", |
|
|
pad_token=None, |
|
|
add_bos_token=True, |
|
|
add_eos_token=False, |
|
|
add_prefix_space=False, |
|
|
use_default_system_prompt=False, |
|
|
chat_template=None, |
|
|
**kwargs, |
|
|
): |
|
|
self.add_bos_token = add_bos_token |
|
|
self.add_eos_token = add_eos_token |
|
|
self.add_prefix_space = add_prefix_space |
|
|
self.use_default_system_prompt = use_default_system_prompt |
|
|
|
|
|
if chat_template is None: |
|
|
chat_template = DEFAULT_CHAT_TEMPLATE |
|
|
|
|
|
super().__init__( |
|
|
vocab_file=vocab_file, |
|
|
tokenizer_file=tokenizer_file, |
|
|
unk_token=unk_token, |
|
|
bos_token=bos_token, |
|
|
eos_token=eos_token, |
|
|
pad_token=pad_token, |
|
|
add_bos_token=add_bos_token, |
|
|
add_eos_token=add_eos_token, |
|
|
add_prefix_space=add_prefix_space, |
|
|
use_default_system_prompt=use_default_system_prompt, |
|
|
chat_template=chat_template, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
@property |
|
|
def can_save_slow_tokenizer(self) -> bool: |
|
|
return os.path.isfile(self.vocab_file) if self.vocab_file else False |
|
|
|
|
|
@property |
|
|
def default_chat_template(self) -> str: |
|
|
"""Returns the default chat template.""" |
|
|
return DEFAULT_CHAT_TEMPLATE |
|
|
|
|
|
def build_inputs_with_special_tokens( |
|
|
self, |
|
|
token_ids_0: List[int], |
|
|
token_ids_1: Optional[List[int]] = None |
|
|
) -> List[int]: |
|
|
"""Build model inputs with special tokens.""" |
|
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] |
|
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] |
|
|
|
|
|
output = bos_token_id + token_ids_0 + eos_token_id |
|
|
|
|
|
if token_ids_1 is not None: |
|
|
output = output + bos_token_id + token_ids_1 + eos_token_id |
|
|
|
|
|
return output |
|
|
|
|
|
def get_special_tokens_mask( |
|
|
self, |
|
|
token_ids_0: List[int], |
|
|
token_ids_1: Optional[List[int]] = None, |
|
|
already_has_special_tokens: bool = False |
|
|
) -> List[int]: |
|
|
"""Retrieve special tokens mask.""" |
|
|
if already_has_special_tokens: |
|
|
return super().get_special_tokens_mask( |
|
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
|
) |
|
|
|
|
|
bos_token_id = [1] if self.add_bos_token else [] |
|
|
eos_token_id = [1] if self.add_eos_token else [] |
|
|
|
|
|
if token_ids_1 is None: |
|
|
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id |
|
|
return ( |
|
|
bos_token_id |
|
|
+ ([0] * len(token_ids_0)) |
|
|
+ eos_token_id |
|
|
+ bos_token_id |
|
|
+ ([0] * len(token_ids_1)) |
|
|
+ eos_token_id |
|
|
) |
|
|
|
|
|
def create_token_type_ids_from_sequences( |
|
|
self, |
|
|
token_ids_0: List[int], |
|
|
token_ids_1: Optional[List[int]] = None |
|
|
) -> List[int]: |
|
|
"""Create token type IDs from sequences.""" |
|
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] |
|
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] |
|
|
|
|
|
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) |
|
|
|
|
|
if token_ids_1 is not None: |
|
|
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) |
|
|
|
|
|
return output |
|
|
|
|
|
except ImportError: |
|
|
|
|
|
IQuestCoderTokenizerFast = None |
|
|
logger.info( |
|
|
"The `tokenizers` library is not installed. " |
|
|
"IQuestCoderTokenizerFast will not be available. " |
|
|
"Install it with `pip install tokenizers`." |
|
|
) |
|
|
|
|
|
|