Upload folder using huggingface_hub
Browse files- config.json +38 -0
- generation_config.json +7 -0
- latest +1 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +298 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- trainer_state.json +1761 -0
- training_args.bin +3 -0
- zero_to_fp32.py +604 -0
config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/stardoc/escher/checkpoints/Emu3-Base-SFT-without_cot-Mar04_256_lr1e-4/checkpoint-8400",
|
3 |
+
"architectures": [
|
4 |
+
"Emu3ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.1,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "BAAI/Emu3-Stage1--configuration_emu3.Emu3Config",
|
9 |
+
"AutoModelForCausalLM": "BAAI/Emu3-Stage1--modeling_emu3.Emu3ForCausalLM"
|
10 |
+
},
|
11 |
+
"boi_token_id": 151852,
|
12 |
+
"bos_token_id": 151849,
|
13 |
+
"eof_token_id": 151847,
|
14 |
+
"eoi_token_id": 151853,
|
15 |
+
"eol_token_id": 151846,
|
16 |
+
"eos_token_id": 151850,
|
17 |
+
"hidden_act": "silu",
|
18 |
+
"hidden_size": 4096,
|
19 |
+
"image_area": 65536,
|
20 |
+
"img_token_id": 151851,
|
21 |
+
"initializer_range": 0.02,
|
22 |
+
"intermediate_size": 14336,
|
23 |
+
"max_position_embeddings": 4300,
|
24 |
+
"model_type": "Emu3",
|
25 |
+
"num_attention_heads": 32,
|
26 |
+
"num_hidden_layers": 32,
|
27 |
+
"num_key_value_heads": 8,
|
28 |
+
"pad_token_id": 151643,
|
29 |
+
"pretraining_tp": 1,
|
30 |
+
"rms_norm_eps": 1e-05,
|
31 |
+
"rope_scaling": null,
|
32 |
+
"rope_theta": 1000000.0,
|
33 |
+
"tie_word_embeddings": false,
|
34 |
+
"torch_dtype": "bfloat16",
|
35 |
+
"transformers_version": "4.44.0",
|
36 |
+
"use_cache": false,
|
37 |
+
"vocab_size": 184622
|
38 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 151849,
|
4 |
+
"eos_token_id": 151850,
|
5 |
+
"pad_token_id": 151643,
|
6 |
+
"transformers_version": "4.44.0"
|
7 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step10800
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c950d53ff85a875821ef8d5cb755585ca5113fea940843a458f280a6625c2d2d
|
3 |
+
size 4884766656
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6015ee78d8bbce3a82ecdfb889a81f0ca7f163a441ff312d06c578402528f9b5
|
3 |
+
size 4999819320
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ec098dadee1d0ec80425cd842767ff3f9bdb624db80d414167515503cf1c1b5
|
3 |
+
size 4915916184
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d59e70779b24544e822436ab27875b960c8d9ae8e2725aa0dfb535e64119bae
|
3 |
+
size 2183554760
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16984023040
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
296 |
+
"model.norm.weight": "model-00004-of-00004.safetensors"
|
297 |
+
}
|
298 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0020cac19127fc67d6d5960e15fda43dbcb8fb80e14be25ac40ff69dfb58144c
|
3 |
+
size 15984
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:143f2bf9d901ff901e9e2154e08982661143a02b60290b2ce5922def4b4ba3d6
|
3 |
+
size 15984
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:751b067f191bcd682bf2fee60c8557dd60e9eaab4d77cd95921737f386fdb4e6
|
3 |
+
size 15984
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3f7105e072e76c4955155ddbec3394988e98ef3304c216e70c188559608cc06
|
3 |
+
size 15984
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d6902f393a7113d4eab84561276dd26e0fe79dba1e4a516fa1564e5b92d272e
|
3 |
+
size 15984
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04193a132d9e2c1feb69b5b27806970167a2247b1136fcf0099dc3be9a10d31d
|
3 |
+
size 15984
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:277ab7a7aa8282c34b4c5f04929859adbbd61df39dd62dd9a9a841f3b8bb888b
|
3 |
+
size 15984
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:823437db304bb4cf1bd59d5bb2e1eca8d99f15af66dd939c8756d68d5a12f879
|
3 |
+
size 15984
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf41411111ad42f2c42c34fec153aaf1de551d4b135b9cfa6a9021e2b34de0eb
|
3 |
+
size 1064
|
trainer_state.json
ADDED
@@ -0,0 +1,1761 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.089829781147189,
|
5 |
+
"eval_steps": 400,
|
6 |
+
"global_step": 10800,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.014304105278214848,
|
13 |
+
"grad_norm": 1.6012784676437102,
|
14 |
+
"learning_rate": 1.6666666666666667e-06,
|
15 |
+
"loss": 4.4038,
|
16 |
+
"step": 50
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.028608210556429696,
|
20 |
+
"grad_norm": 0.81484251583879,
|
21 |
+
"learning_rate": 3.3333333333333333e-06,
|
22 |
+
"loss": 3.6036,
|
23 |
+
"step": 100
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.04291231583464454,
|
27 |
+
"grad_norm": 3.9762696099154904,
|
28 |
+
"learning_rate": 5e-06,
|
29 |
+
"loss": 3.0207,
|
30 |
+
"step": 150
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.05721642111285939,
|
34 |
+
"grad_norm": 3.057952660211588,
|
35 |
+
"learning_rate": 6.666666666666667e-06,
|
36 |
+
"loss": 2.4324,
|
37 |
+
"step": 200
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.07152052639107424,
|
41 |
+
"grad_norm": 2.092719622855296,
|
42 |
+
"learning_rate": 8.333333333333334e-06,
|
43 |
+
"loss": 2.222,
|
44 |
+
"step": 250
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.08582463166928908,
|
48 |
+
"grad_norm": 6.08825143706115,
|
49 |
+
"learning_rate": 1e-05,
|
50 |
+
"loss": 2.1021,
|
51 |
+
"step": 300
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.10012873694750393,
|
55 |
+
"grad_norm": 2.493878945601314,
|
56 |
+
"learning_rate": 9.999953760295448e-06,
|
57 |
+
"loss": 1.9831,
|
58 |
+
"step": 350
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.11443284222571878,
|
62 |
+
"grad_norm": 4.462960292469778,
|
63 |
+
"learning_rate": 9.999815042132062e-06,
|
64 |
+
"loss": 1.917,
|
65 |
+
"step": 400
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.11443284222571878,
|
69 |
+
"eval_loss": 1.808639645576477,
|
70 |
+
"eval_runtime": 14.2096,
|
71 |
+
"eval_samples_per_second": 70.375,
|
72 |
+
"eval_steps_per_second": 2.252,
|
73 |
+
"step": 400
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.12873694750393364,
|
77 |
+
"grad_norm": 2.038795534490349,
|
78 |
+
"learning_rate": 9.999583848360633e-06,
|
79 |
+
"loss": 1.8614,
|
80 |
+
"step": 450
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.1430410527821485,
|
84 |
+
"grad_norm": 2.259377386606669,
|
85 |
+
"learning_rate": 9.999260183732424e-06,
|
86 |
+
"loss": 1.8105,
|
87 |
+
"step": 500
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.1573451580603633,
|
91 |
+
"grad_norm": 1.6457423711505388,
|
92 |
+
"learning_rate": 9.998844054899058e-06,
|
93 |
+
"loss": 1.7759,
|
94 |
+
"step": 550
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.17164926333857816,
|
98 |
+
"grad_norm": 2.6198123977173555,
|
99 |
+
"learning_rate": 9.998335470412393e-06,
|
100 |
+
"loss": 1.7508,
|
101 |
+
"step": 600
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.185953368616793,
|
105 |
+
"grad_norm": 1.6377415784196128,
|
106 |
+
"learning_rate": 9.997734440724333e-06,
|
107 |
+
"loss": 1.7156,
|
108 |
+
"step": 650
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.20025747389500786,
|
112 |
+
"grad_norm": 3.5293148754159285,
|
113 |
+
"learning_rate": 9.997040978186633e-06,
|
114 |
+
"loss": 1.7015,
|
115 |
+
"step": 700
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.21456157917322272,
|
119 |
+
"grad_norm": 2.3013282525925263,
|
120 |
+
"learning_rate": 9.996255097050624e-06,
|
121 |
+
"loss": 1.6782,
|
122 |
+
"step": 750
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.22886568445143757,
|
126 |
+
"grad_norm": 2.428974082500653,
|
127 |
+
"learning_rate": 9.995376813466934e-06,
|
128 |
+
"loss": 1.66,
|
129 |
+
"step": 800
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.22886568445143757,
|
133 |
+
"eval_loss": 1.5992412567138672,
|
134 |
+
"eval_runtime": 14.0538,
|
135 |
+
"eval_samples_per_second": 71.155,
|
136 |
+
"eval_steps_per_second": 2.277,
|
137 |
+
"step": 800
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.24316978972965242,
|
141 |
+
"grad_norm": 2.9094373795416506,
|
142 |
+
"learning_rate": 9.994406145485151e-06,
|
143 |
+
"loss": 1.6399,
|
144 |
+
"step": 850
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.25747389500786727,
|
148 |
+
"grad_norm": 1.5133813561921106,
|
149 |
+
"learning_rate": 9.993343113053454e-06,
|
150 |
+
"loss": 1.626,
|
151 |
+
"step": 900
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 0.2717780002860821,
|
155 |
+
"grad_norm": 1.3663105185649191,
|
156 |
+
"learning_rate": 9.992187738018203e-06,
|
157 |
+
"loss": 1.6099,
|
158 |
+
"step": 950
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.286082105564297,
|
162 |
+
"grad_norm": 1.3144291853877879,
|
163 |
+
"learning_rate": 9.99094004412348e-06,
|
164 |
+
"loss": 1.5968,
|
165 |
+
"step": 1000
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.3003862108425118,
|
169 |
+
"grad_norm": 1.8770146895064077,
|
170 |
+
"learning_rate": 9.989600057010625e-06,
|
171 |
+
"loss": 1.5754,
|
172 |
+
"step": 1050
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 0.3146903161207266,
|
176 |
+
"grad_norm": 1.8478210167954083,
|
177 |
+
"learning_rate": 9.988167804217682e-06,
|
178 |
+
"loss": 1.5711,
|
179 |
+
"step": 1100
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.3289944213989415,
|
183 |
+
"grad_norm": 1.5949372088951037,
|
184 |
+
"learning_rate": 9.986643315178848e-06,
|
185 |
+
"loss": 1.5557,
|
186 |
+
"step": 1150
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 0.3432985266771563,
|
190 |
+
"grad_norm": 1.8431659408457755,
|
191 |
+
"learning_rate": 9.98502662122387e-06,
|
192 |
+
"loss": 1.5572,
|
193 |
+
"step": 1200
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.3432985266771563,
|
197 |
+
"eval_loss": 1.50032639503479,
|
198 |
+
"eval_runtime": 14.0776,
|
199 |
+
"eval_samples_per_second": 71.035,
|
200 |
+
"eval_steps_per_second": 2.273,
|
201 |
+
"step": 1200
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.3576026319553712,
|
205 |
+
"grad_norm": 1.3869607567913713,
|
206 |
+
"learning_rate": 9.983317755577392e-06,
|
207 |
+
"loss": 1.5363,
|
208 |
+
"step": 1250
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"epoch": 0.371906737233586,
|
212 |
+
"grad_norm": 1.4514189742887267,
|
213 |
+
"learning_rate": 9.981516753358274e-06,
|
214 |
+
"loss": 1.5358,
|
215 |
+
"step": 1300
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"epoch": 0.3862108425118009,
|
219 |
+
"grad_norm": 1.4333267526235296,
|
220 |
+
"learning_rate": 9.979623651578881e-06,
|
221 |
+
"loss": 1.5141,
|
222 |
+
"step": 1350
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"epoch": 0.40051494779001573,
|
226 |
+
"grad_norm": 0.8580367772458624,
|
227 |
+
"learning_rate": 9.977638489144308e-06,
|
228 |
+
"loss": 1.523,
|
229 |
+
"step": 1400
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"epoch": 0.4148190530682306,
|
233 |
+
"grad_norm": 0.9460440332154582,
|
234 |
+
"learning_rate": 9.975561306851585e-06,
|
235 |
+
"loss": 1.5175,
|
236 |
+
"step": 1450
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.42912315834644543,
|
240 |
+
"grad_norm": 1.376203229447874,
|
241 |
+
"learning_rate": 9.973392147388847e-06,
|
242 |
+
"loss": 1.5126,
|
243 |
+
"step": 1500
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.4434272636246603,
|
247 |
+
"grad_norm": 1.5041770784794857,
|
248 |
+
"learning_rate": 9.971131055334445e-06,
|
249 |
+
"loss": 1.4977,
|
250 |
+
"step": 1550
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"epoch": 0.45773136890287514,
|
254 |
+
"grad_norm": 1.095703863839786,
|
255 |
+
"learning_rate": 9.968778077156035e-06,
|
256 |
+
"loss": 1.4877,
|
257 |
+
"step": 1600
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.45773136890287514,
|
261 |
+
"eval_loss": 1.4638383388519287,
|
262 |
+
"eval_runtime": 14.0468,
|
263 |
+
"eval_samples_per_second": 71.191,
|
264 |
+
"eval_steps_per_second": 2.278,
|
265 |
+
"step": 1600
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"epoch": 0.47203547418109,
|
269 |
+
"grad_norm": 1.1967770971190828,
|
270 |
+
"learning_rate": 9.966333261209625e-06,
|
271 |
+
"loss": 1.4941,
|
272 |
+
"step": 1650
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.48633957945930484,
|
276 |
+
"grad_norm": 0.7764934991914475,
|
277 |
+
"learning_rate": 9.96379665773858e-06,
|
278 |
+
"loss": 1.4943,
|
279 |
+
"step": 1700
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.5006436847375196,
|
283 |
+
"grad_norm": 1.1957507140564159,
|
284 |
+
"learning_rate": 9.961168318872583e-06,
|
285 |
+
"loss": 1.4834,
|
286 |
+
"step": 1750
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 0.5149477900157345,
|
290 |
+
"grad_norm": 0.891291786132535,
|
291 |
+
"learning_rate": 9.958448298626576e-06,
|
292 |
+
"loss": 1.4766,
|
293 |
+
"step": 1800
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 0.5292518952939493,
|
297 |
+
"grad_norm": 0.9430107046686556,
|
298 |
+
"learning_rate": 9.95563665289964e-06,
|
299 |
+
"loss": 1.4659,
|
300 |
+
"step": 1850
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"epoch": 0.5435560005721642,
|
304 |
+
"grad_norm": 1.3583446842191815,
|
305 |
+
"learning_rate": 9.952733439473847e-06,
|
306 |
+
"loss": 1.4681,
|
307 |
+
"step": 1900
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"epoch": 0.557860105850379,
|
311 |
+
"grad_norm": 1.010261006024344,
|
312 |
+
"learning_rate": 9.94973871801308e-06,
|
313 |
+
"loss": 1.4667,
|
314 |
+
"step": 1950
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.572164211128594,
|
318 |
+
"grad_norm": 0.8494941104833196,
|
319 |
+
"learning_rate": 9.946652550061798e-06,
|
320 |
+
"loss": 1.4453,
|
321 |
+
"step": 2000
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.572164211128594,
|
325 |
+
"eval_loss": 1.4287511110305786,
|
326 |
+
"eval_runtime": 14.0255,
|
327 |
+
"eval_samples_per_second": 71.299,
|
328 |
+
"eval_steps_per_second": 2.282,
|
329 |
+
"step": 2000
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.5864683164068087,
|
333 |
+
"grad_norm": 0.7812469708103134,
|
334 |
+
"learning_rate": 9.943474999043775e-06,
|
335 |
+
"loss": 1.4496,
|
336 |
+
"step": 2050
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"epoch": 0.6007724216850236,
|
340 |
+
"grad_norm": 0.7254104161544093,
|
341 |
+
"learning_rate": 9.9402061302608e-06,
|
342 |
+
"loss": 1.4462,
|
343 |
+
"step": 2100
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"epoch": 0.6150765269632384,
|
347 |
+
"grad_norm": 1.1402597738223317,
|
348 |
+
"learning_rate": 9.93684601089133e-06,
|
349 |
+
"loss": 1.4402,
|
350 |
+
"step": 2150
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.6293806322414532,
|
354 |
+
"grad_norm": 1.0636750138637265,
|
355 |
+
"learning_rate": 9.933394709989109e-06,
|
356 |
+
"loss": 1.4514,
|
357 |
+
"step": 2200
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.6436847375196681,
|
361 |
+
"grad_norm": 0.6340325583537392,
|
362 |
+
"learning_rate": 9.92985229848175e-06,
|
363 |
+
"loss": 1.4376,
|
364 |
+
"step": 2250
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"epoch": 0.657988842797883,
|
368 |
+
"grad_norm": 1.3226650510062645,
|
369 |
+
"learning_rate": 9.926218849169284e-06,
|
370 |
+
"loss": 1.4404,
|
371 |
+
"step": 2300
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 0.6722929480760979,
|
375 |
+
"grad_norm": 0.9023729708460776,
|
376 |
+
"learning_rate": 9.922494436722653e-06,
|
377 |
+
"loss": 1.435,
|
378 |
+
"step": 2350
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"epoch": 0.6865970533543126,
|
382 |
+
"grad_norm": 1.1170660045757717,
|
383 |
+
"learning_rate": 9.91867913768218e-06,
|
384 |
+
"loss": 1.4275,
|
385 |
+
"step": 2400
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"epoch": 0.6865970533543126,
|
389 |
+
"eval_loss": 1.4157905578613281,
|
390 |
+
"eval_runtime": 14.0561,
|
391 |
+
"eval_samples_per_second": 71.143,
|
392 |
+
"eval_steps_per_second": 2.277,
|
393 |
+
"step": 2400
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.7009011586325276,
|
397 |
+
"grad_norm": 1.164925228192199,
|
398 |
+
"learning_rate": 9.914773030456001e-06,
|
399 |
+
"loss": 1.4238,
|
400 |
+
"step": 2450
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"epoch": 0.7152052639107424,
|
404 |
+
"grad_norm": 0.8519530167823217,
|
405 |
+
"learning_rate": 9.910776195318448e-06,
|
406 |
+
"loss": 1.4347,
|
407 |
+
"step": 2500
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 0.7295093691889573,
|
411 |
+
"grad_norm": 0.7139589978182425,
|
412 |
+
"learning_rate": 9.906688714408396e-06,
|
413 |
+
"loss": 1.4306,
|
414 |
+
"step": 2550
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 0.743813474467172,
|
418 |
+
"grad_norm": 0.8653282057170465,
|
419 |
+
"learning_rate": 9.902510671727583e-06,
|
420 |
+
"loss": 1.4229,
|
421 |
+
"step": 2600
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 0.758117579745387,
|
425 |
+
"grad_norm": 0.8247347491114752,
|
426 |
+
"learning_rate": 9.898242153138882e-06,
|
427 |
+
"loss": 1.4118,
|
428 |
+
"step": 2650
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.7724216850236018,
|
432 |
+
"grad_norm": 1.0924147996236788,
|
433 |
+
"learning_rate": 9.89388324636453e-06,
|
434 |
+
"loss": 1.4322,
|
435 |
+
"step": 2700
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.7867257903018167,
|
439 |
+
"grad_norm": 0.842516122122594,
|
440 |
+
"learning_rate": 9.889434040984333e-06,
|
441 |
+
"loss": 1.4101,
|
442 |
+
"step": 2750
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"epoch": 0.8010298955800315,
|
446 |
+
"grad_norm": 0.8063486362804477,
|
447 |
+
"learning_rate": 9.88489462843382e-06,
|
448 |
+
"loss": 1.4191,
|
449 |
+
"step": 2800
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.8010298955800315,
|
453 |
+
"eval_loss": 1.4116355180740356,
|
454 |
+
"eval_runtime": 13.9779,
|
455 |
+
"eval_samples_per_second": 71.542,
|
456 |
+
"eval_steps_per_second": 2.289,
|
457 |
+
"step": 2800
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.8153340008582464,
|
461 |
+
"grad_norm": 0.6258848452847008,
|
462 |
+
"learning_rate": 9.880265102002369e-06,
|
463 |
+
"loss": 1.4001,
|
464 |
+
"step": 2850
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.8296381061364612,
|
468 |
+
"grad_norm": 0.726517642303323,
|
469 |
+
"learning_rate": 9.875545556831283e-06,
|
470 |
+
"loss": 1.4086,
|
471 |
+
"step": 2900
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.843942211414676,
|
475 |
+
"grad_norm": 0.6713970013254277,
|
476 |
+
"learning_rate": 9.870736089911836e-06,
|
477 |
+
"loss": 1.4073,
|
478 |
+
"step": 2950
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.8582463166928909,
|
482 |
+
"grad_norm": 0.6148598667666052,
|
483 |
+
"learning_rate": 9.865836800083291e-06,
|
484 |
+
"loss": 1.4093,
|
485 |
+
"step": 3000
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.8725504219711057,
|
489 |
+
"grad_norm": 0.5359562950631023,
|
490 |
+
"learning_rate": 9.860847788030852e-06,
|
491 |
+
"loss": 1.4017,
|
492 |
+
"step": 3050
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.8868545272493206,
|
496 |
+
"grad_norm": 0.6194549549607876,
|
497 |
+
"learning_rate": 9.855769156283604e-06,
|
498 |
+
"loss": 1.4196,
|
499 |
+
"step": 3100
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.9011586325275354,
|
503 |
+
"grad_norm": 0.7870838887793197,
|
504 |
+
"learning_rate": 9.850601009212408e-06,
|
505 |
+
"loss": 1.4039,
|
506 |
+
"step": 3150
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.9154627378057503,
|
510 |
+
"grad_norm": 0.8348797495331252,
|
511 |
+
"learning_rate": 9.845343453027747e-06,
|
512 |
+
"loss": 1.4092,
|
513 |
+
"step": 3200
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.9154627378057503,
|
517 |
+
"eval_loss": 1.3961894512176514,
|
518 |
+
"eval_runtime": 14.0237,
|
519 |
+
"eval_samples_per_second": 71.308,
|
520 |
+
"eval_steps_per_second": 2.282,
|
521 |
+
"step": 3200
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.9297668430839651,
|
525 |
+
"grad_norm": 0.8890086654120082,
|
526 |
+
"learning_rate": 9.839996595777552e-06,
|
527 |
+
"loss": 1.3991,
|
528 |
+
"step": 3250
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.94407094836218,
|
532 |
+
"grad_norm": 0.8338244522175184,
|
533 |
+
"learning_rate": 9.83456054734498e-06,
|
534 |
+
"loss": 1.3939,
|
535 |
+
"step": 3300
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.9583750536403948,
|
539 |
+
"grad_norm": 0.667534745389414,
|
540 |
+
"learning_rate": 9.829035419446156e-06,
|
541 |
+
"loss": 1.4052,
|
542 |
+
"step": 3350
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.9726791589186097,
|
546 |
+
"grad_norm": 0.830996338803645,
|
547 |
+
"learning_rate": 9.823421325627865e-06,
|
548 |
+
"loss": 1.408,
|
549 |
+
"step": 3400
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.9869832641968245,
|
553 |
+
"grad_norm": 0.752895350030203,
|
554 |
+
"learning_rate": 9.81771838126524e-06,
|
555 |
+
"loss": 1.3927,
|
556 |
+
"step": 3450
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 1.0012873694750393,
|
560 |
+
"grad_norm": 0.6022807633216317,
|
561 |
+
"learning_rate": 9.811926703559374e-06,
|
562 |
+
"loss": 1.3947,
|
563 |
+
"step": 3500
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 1.0155914747532542,
|
567 |
+
"grad_norm": 0.7757999852306153,
|
568 |
+
"learning_rate": 9.806046411534916e-06,
|
569 |
+
"loss": 1.3613,
|
570 |
+
"step": 3550
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 1.029895580031469,
|
574 |
+
"grad_norm": 0.6991186658573486,
|
575 |
+
"learning_rate": 9.800077626037633e-06,
|
576 |
+
"loss": 1.3805,
|
577 |
+
"step": 3600
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 1.029895580031469,
|
581 |
+
"eval_loss": 1.386795163154602,
|
582 |
+
"eval_runtime": 13.9668,
|
583 |
+
"eval_samples_per_second": 71.598,
|
584 |
+
"eval_steps_per_second": 2.291,
|
585 |
+
"step": 3600
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 1.044199685309684,
|
589 |
+
"grad_norm": 0.6304272914508194,
|
590 |
+
"learning_rate": 9.794020469731915e-06,
|
591 |
+
"loss": 1.3772,
|
592 |
+
"step": 3650
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"epoch": 1.0585037905878987,
|
596 |
+
"grad_norm": 0.6127596406721845,
|
597 |
+
"learning_rate": 9.787875067098257e-06,
|
598 |
+
"loss": 1.3695,
|
599 |
+
"step": 3700
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 1.0728078958661136,
|
603 |
+
"grad_norm": 0.5752396229133312,
|
604 |
+
"learning_rate": 9.781641544430703e-06,
|
605 |
+
"loss": 1.3737,
|
606 |
+
"step": 3750
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 1.0871120011443285,
|
610 |
+
"grad_norm": 0.8167932197181069,
|
611 |
+
"learning_rate": 9.775320029834255e-06,
|
612 |
+
"loss": 1.3679,
|
613 |
+
"step": 3800
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 1.1014161064225432,
|
617 |
+
"grad_norm": 0.7493986062078165,
|
618 |
+
"learning_rate": 9.76891065322223e-06,
|
619 |
+
"loss": 1.3686,
|
620 |
+
"step": 3850
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 1.115720211700758,
|
624 |
+
"grad_norm": 0.6896574555563986,
|
625 |
+
"learning_rate": 9.762413546313597e-06,
|
626 |
+
"loss": 1.3688,
|
627 |
+
"step": 3900
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 1.130024316978973,
|
631 |
+
"grad_norm": 0.54479225381951,
|
632 |
+
"learning_rate": 9.755828842630269e-06,
|
633 |
+
"loss": 1.3577,
|
634 |
+
"step": 3950
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 1.144328422257188,
|
638 |
+
"grad_norm": 0.8631407967474234,
|
639 |
+
"learning_rate": 9.749156677494357e-06,
|
640 |
+
"loss": 1.3791,
|
641 |
+
"step": 4000
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 1.144328422257188,
|
645 |
+
"eval_loss": 1.3818904161453247,
|
646 |
+
"eval_runtime": 14.0228,
|
647 |
+
"eval_samples_per_second": 71.312,
|
648 |
+
"eval_steps_per_second": 2.282,
|
649 |
+
"step": 4000
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 1.1586325275354026,
|
653 |
+
"grad_norm": 0.6269351505110898,
|
654 |
+
"learning_rate": 9.742397188025394e-06,
|
655 |
+
"loss": 1.3672,
|
656 |
+
"step": 4050
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 1.1729366328136175,
|
660 |
+
"grad_norm": 0.5964977170501943,
|
661 |
+
"learning_rate": 9.735550513137513e-06,
|
662 |
+
"loss": 1.3579,
|
663 |
+
"step": 4100
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 1.1872407380918324,
|
667 |
+
"grad_norm": 0.6696040499572795,
|
668 |
+
"learning_rate": 9.728616793536588e-06,
|
669 |
+
"loss": 1.3704,
|
670 |
+
"step": 4150
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"epoch": 1.2015448433700473,
|
674 |
+
"grad_norm": 0.7153959218092929,
|
675 |
+
"learning_rate": 9.721596171717352e-06,
|
676 |
+
"loss": 1.3631,
|
677 |
+
"step": 4200
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"epoch": 1.215848948648262,
|
681 |
+
"grad_norm": 0.8228253318299735,
|
682 |
+
"learning_rate": 9.714488791960463e-06,
|
683 |
+
"loss": 1.3643,
|
684 |
+
"step": 4250
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 1.230153053926477,
|
688 |
+
"grad_norm": 0.6427955816989828,
|
689 |
+
"learning_rate": 9.707294800329536e-06,
|
690 |
+
"loss": 1.3608,
|
691 |
+
"step": 4300
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 1.2444571592046918,
|
695 |
+
"grad_norm": 0.6438118616712295,
|
696 |
+
"learning_rate": 9.700014344668152e-06,
|
697 |
+
"loss": 1.3564,
|
698 |
+
"step": 4350
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 1.2587612644829065,
|
702 |
+
"grad_norm": 0.5732058961632965,
|
703 |
+
"learning_rate": 9.692647574596803e-06,
|
704 |
+
"loss": 1.3623,
|
705 |
+
"step": 4400
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 1.2587612644829065,
|
709 |
+
"eval_loss": 1.3667371273040771,
|
710 |
+
"eval_runtime": 14.0711,
|
711 |
+
"eval_samples_per_second": 71.068,
|
712 |
+
"eval_steps_per_second": 2.274,
|
713 |
+
"step": 4400
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 1.2732084108139037,
|
717 |
+
"grad_norm": 0.5434874117890776,
|
718 |
+
"learning_rate": 9.685194641509837e-06,
|
719 |
+
"loss": 1.3592,
|
720 |
+
"step": 4450
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"epoch": 1.2875125160921184,
|
724 |
+
"grad_norm": 0.8067573948854371,
|
725 |
+
"learning_rate": 9.677655698572326e-06,
|
726 |
+
"loss": 1.3571,
|
727 |
+
"step": 4500
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 1.3018166213703333,
|
731 |
+
"grad_norm": 0.6211280738341731,
|
732 |
+
"learning_rate": 9.670030900716941e-06,
|
733 |
+
"loss": 1.3577,
|
734 |
+
"step": 4550
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 1.3161207266485482,
|
738 |
+
"grad_norm": 0.47127980997402974,
|
739 |
+
"learning_rate": 9.662320404640743e-06,
|
740 |
+
"loss": 1.3497,
|
741 |
+
"step": 4600
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 1.3304248319267629,
|
745 |
+
"grad_norm": 0.6437090365289073,
|
746 |
+
"learning_rate": 9.654524368801982e-06,
|
747 |
+
"loss": 1.3611,
|
748 |
+
"step": 4650
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"epoch": 1.3447289372049778,
|
752 |
+
"grad_norm": 0.4706214878937702,
|
753 |
+
"learning_rate": 9.646642953416835e-06,
|
754 |
+
"loss": 1.3596,
|
755 |
+
"step": 4700
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 1.3590330424831927,
|
759 |
+
"grad_norm": 0.4433218616654087,
|
760 |
+
"learning_rate": 9.638676320456109e-06,
|
761 |
+
"loss": 1.3612,
|
762 |
+
"step": 4750
|
763 |
+
},
|
764 |
+
{
|
765 |
+
"epoch": 1.3733371477614076,
|
766 |
+
"grad_norm": 0.6227834199361844,
|
767 |
+
"learning_rate": 9.630624633641918e-06,
|
768 |
+
"loss": 1.3487,
|
769 |
+
"step": 4800
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 1.3733371477614076,
|
773 |
+
"eval_loss": 1.3724805116653442,
|
774 |
+
"eval_runtime": 13.958,
|
775 |
+
"eval_samples_per_second": 71.643,
|
776 |
+
"eval_steps_per_second": 2.293,
|
777 |
+
"step": 4800
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 1.3876412530396225,
|
781 |
+
"grad_norm": 0.5615209752207829,
|
782 |
+
"learning_rate": 9.622488058444313e-06,
|
783 |
+
"loss": 1.3416,
|
784 |
+
"step": 4850
|
785 |
+
},
|
786 |
+
{
|
787 |
+
"epoch": 1.4019453583178372,
|
788 |
+
"grad_norm": 0.4593448830072353,
|
789 |
+
"learning_rate": 9.614266762077891e-06,
|
790 |
+
"loss": 1.3509,
|
791 |
+
"step": 4900
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 1.416249463596052,
|
795 |
+
"grad_norm": 0.5260361200473717,
|
796 |
+
"learning_rate": 9.605960913498342e-06,
|
797 |
+
"loss": 1.3504,
|
798 |
+
"step": 4950
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"epoch": 1.430553568874267,
|
802 |
+
"grad_norm": 0.4949775762320425,
|
803 |
+
"learning_rate": 9.597570683398996e-06,
|
804 |
+
"loss": 1.3608,
|
805 |
+
"step": 5000
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"epoch": 1.4448576741524817,
|
809 |
+
"grad_norm": 0.7134992551375888,
|
810 |
+
"learning_rate": 9.5890962442073e-06,
|
811 |
+
"loss": 1.3456,
|
812 |
+
"step": 5050
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 1.4591617794306966,
|
816 |
+
"grad_norm": 0.749997828555375,
|
817 |
+
"learning_rate": 9.580537770081285e-06,
|
818 |
+
"loss": 1.3413,
|
819 |
+
"step": 5100
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 1.4734658847089115,
|
823 |
+
"grad_norm": 0.5312330906616294,
|
824 |
+
"learning_rate": 9.57189543690598e-06,
|
825 |
+
"loss": 1.3507,
|
826 |
+
"step": 5150
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 1.4877699899871262,
|
830 |
+
"grad_norm": 0.5913338284525619,
|
831 |
+
"learning_rate": 9.563169422289798e-06,
|
832 |
+
"loss": 1.3386,
|
833 |
+
"step": 5200
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 1.4877699899871262,
|
837 |
+
"eval_loss": 1.359579086303711,
|
838 |
+
"eval_runtime": 14.046,
|
839 |
+
"eval_samples_per_second": 71.195,
|
840 |
+
"eval_steps_per_second": 2.278,
|
841 |
+
"step": 5200
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 1.5020740952653413,
|
845 |
+
"grad_norm": 0.63516444597305,
|
846 |
+
"learning_rate": 9.554359905560887e-06,
|
847 |
+
"loss": 1.3412,
|
848 |
+
"step": 5250
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 1.516378200543556,
|
852 |
+
"grad_norm": 0.4411581484928778,
|
853 |
+
"learning_rate": 9.54546706776345e-06,
|
854 |
+
"loss": 1.3505,
|
855 |
+
"step": 5300
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 1.530682305821771,
|
859 |
+
"grad_norm": 0.403266190389094,
|
860 |
+
"learning_rate": 9.536491091654018e-06,
|
861 |
+
"loss": 1.3418,
|
862 |
+
"step": 5350
|
863 |
+
},
|
864 |
+
{
|
865 |
+
"epoch": 1.5449864110999858,
|
866 |
+
"grad_norm": 0.4887790997121695,
|
867 |
+
"learning_rate": 9.527432161697696e-06,
|
868 |
+
"loss": 1.352,
|
869 |
+
"step": 5400
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 1.5592905163782005,
|
873 |
+
"grad_norm": 0.43803734390526294,
|
874 |
+
"learning_rate": 9.518290464064365e-06,
|
875 |
+
"loss": 1.3374,
|
876 |
+
"step": 5450
|
877 |
+
},
|
878 |
+
{
|
879 |
+
"epoch": 1.5735946216564154,
|
880 |
+
"grad_norm": 0.4477296911829739,
|
881 |
+
"learning_rate": 9.509066186624872e-06,
|
882 |
+
"loss": 1.3362,
|
883 |
+
"step": 5500
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"epoch": 1.5878987269346303,
|
887 |
+
"grad_norm": 0.4849220779673394,
|
888 |
+
"learning_rate": 9.499759518947156e-06,
|
889 |
+
"loss": 1.3463,
|
890 |
+
"step": 5550
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 1.602202832212845,
|
894 |
+
"grad_norm": 0.43453154893881496,
|
895 |
+
"learning_rate": 9.490370652292357e-06,
|
896 |
+
"loss": 1.3342,
|
897 |
+
"step": 5600
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 1.602202832212845,
|
901 |
+
"eval_loss": 1.3611611127853394,
|
902 |
+
"eval_runtime": 13.9617,
|
903 |
+
"eval_samples_per_second": 71.625,
|
904 |
+
"eval_steps_per_second": 2.292,
|
905 |
+
"step": 5600
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 1.61650693749106,
|
909 |
+
"grad_norm": 0.4973975633500145,
|
910 |
+
"learning_rate": 9.480899779610883e-06,
|
911 |
+
"loss": 1.3557,
|
912 |
+
"step": 5650
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 1.6308110427692748,
|
916 |
+
"grad_norm": 0.8646218397904073,
|
917 |
+
"learning_rate": 9.471347095538448e-06,
|
918 |
+
"loss": 1.332,
|
919 |
+
"step": 5700
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.6451151480474895,
|
923 |
+
"grad_norm": 0.4766662524894494,
|
924 |
+
"learning_rate": 9.461712796392067e-06,
|
925 |
+
"loss": 1.3425,
|
926 |
+
"step": 5750
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1.6594192533257046,
|
930 |
+
"grad_norm": 0.43492118267166,
|
931 |
+
"learning_rate": 9.45199708016603e-06,
|
932 |
+
"loss": 1.3366,
|
933 |
+
"step": 5800
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.6737233586039193,
|
937 |
+
"grad_norm": 0.7281191349195701,
|
938 |
+
"learning_rate": 9.442200146527824e-06,
|
939 |
+
"loss": 1.3405,
|
940 |
+
"step": 5850
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 1.6880274638821342,
|
944 |
+
"grad_norm": 0.5059870049803485,
|
945 |
+
"learning_rate": 9.432322196814032e-06,
|
946 |
+
"loss": 1.336,
|
947 |
+
"step": 5900
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 1.7023315691603491,
|
951 |
+
"grad_norm": 0.48815713123329457,
|
952 |
+
"learning_rate": 9.422363434026205e-06,
|
953 |
+
"loss": 1.3331,
|
954 |
+
"step": 5950
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 1.7166356744385638,
|
958 |
+
"grad_norm": 0.4825656212310282,
|
959 |
+
"learning_rate": 9.41232406282667e-06,
|
960 |
+
"loss": 1.3382,
|
961 |
+
"step": 6000
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 1.7166356744385638,
|
965 |
+
"eval_loss": 1.356214165687561,
|
966 |
+
"eval_runtime": 13.9939,
|
967 |
+
"eval_samples_per_second": 71.46,
|
968 |
+
"eval_steps_per_second": 2.287,
|
969 |
+
"step": 6000
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 1.7309397797167787,
|
973 |
+
"grad_norm": 0.7522246864779827,
|
974 |
+
"learning_rate": 9.402204289534344e-06,
|
975 |
+
"loss": 1.3239,
|
976 |
+
"step": 6050
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 1.7452438849949936,
|
980 |
+
"grad_norm": 0.48984350066891824,
|
981 |
+
"learning_rate": 9.392004322120484e-06,
|
982 |
+
"loss": 1.3237,
|
983 |
+
"step": 6100
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 1.7595479902732083,
|
987 |
+
"grad_norm": 0.544930574118496,
|
988 |
+
"learning_rate": 9.381724370204414e-06,
|
989 |
+
"loss": 1.3241,
|
990 |
+
"step": 6150
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 1.7738520955514234,
|
994 |
+
"grad_norm": 0.5482222598847393,
|
995 |
+
"learning_rate": 9.371364645049216e-06,
|
996 |
+
"loss": 1.3313,
|
997 |
+
"step": 6200
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 1.788156200829638,
|
1001 |
+
"grad_norm": 0.46339705172698076,
|
1002 |
+
"learning_rate": 9.360925359557397e-06,
|
1003 |
+
"loss": 1.3256,
|
1004 |
+
"step": 6250
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 1.8024603061078528,
|
1008 |
+
"grad_norm": 0.5277875338001611,
|
1009 |
+
"learning_rate": 9.3504067282665e-06,
|
1010 |
+
"loss": 1.3503,
|
1011 |
+
"step": 6300
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 1.816764411386068,
|
1015 |
+
"grad_norm": 0.5539059109504075,
|
1016 |
+
"learning_rate": 9.339808967344701e-06,
|
1017 |
+
"loss": 1.3368,
|
1018 |
+
"step": 6350
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 1.8310685166642826,
|
1022 |
+
"grad_norm": 0.5119187022621997,
|
1023 |
+
"learning_rate": 9.329132294586374e-06,
|
1024 |
+
"loss": 1.3257,
|
1025 |
+
"step": 6400
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 1.8310685166642826,
|
1029 |
+
"eval_loss": 1.348954200744629,
|
1030 |
+
"eval_runtime": 14.1165,
|
1031 |
+
"eval_samples_per_second": 70.839,
|
1032 |
+
"eval_steps_per_second": 2.267,
|
1033 |
+
"step": 6400
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 1.8453726219424975,
|
1037 |
+
"grad_norm": 0.4572643729622861,
|
1038 |
+
"learning_rate": 9.318376929407606e-06,
|
1039 |
+
"loss": 1.3296,
|
1040 |
+
"step": 6450
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 1.8596767272207124,
|
1044 |
+
"grad_norm": 0.41441721606603,
|
1045 |
+
"learning_rate": 9.307543092841688e-06,
|
1046 |
+
"loss": 1.3306,
|
1047 |
+
"step": 6500
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 1.873980832498927,
|
1051 |
+
"grad_norm": 0.4437842388580668,
|
1052 |
+
"learning_rate": 9.296631007534576e-06,
|
1053 |
+
"loss": 1.3219,
|
1054 |
+
"step": 6550
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 1.888284937777142,
|
1058 |
+
"grad_norm": 0.668469538481535,
|
1059 |
+
"learning_rate": 9.285640897740316e-06,
|
1060 |
+
"loss": 1.3201,
|
1061 |
+
"step": 6600
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"epoch": 1.902589043055357,
|
1065 |
+
"grad_norm": 0.4476992280694945,
|
1066 |
+
"learning_rate": 9.27457298931643e-06,
|
1067 |
+
"loss": 1.3279,
|
1068 |
+
"step": 6650
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"epoch": 1.9168931483335716,
|
1072 |
+
"grad_norm": 0.8609307931818154,
|
1073 |
+
"learning_rate": 9.263427509719287e-06,
|
1074 |
+
"loss": 1.3248,
|
1075 |
+
"step": 6700
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"epoch": 1.9311972536117867,
|
1079 |
+
"grad_norm": 0.48764755574202223,
|
1080 |
+
"learning_rate": 9.252204687999401e-06,
|
1081 |
+
"loss": 1.3293,
|
1082 |
+
"step": 6750
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 1.9455013588900014,
|
1086 |
+
"grad_norm": 0.7588730534632143,
|
1087 |
+
"learning_rate": 9.240904754796767e-06,
|
1088 |
+
"loss": 1.3338,
|
1089 |
+
"step": 6800
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 1.9455013588900014,
|
1093 |
+
"eval_loss": 1.3457790613174438,
|
1094 |
+
"eval_runtime": 14.0391,
|
1095 |
+
"eval_samples_per_second": 71.229,
|
1096 |
+
"eval_steps_per_second": 2.279,
|
1097 |
+
"step": 6800
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 1.9598054641682163,
|
1101 |
+
"grad_norm": 0.47728013357161364,
|
1102 |
+
"learning_rate": 9.22952794233608e-06,
|
1103 |
+
"loss": 1.328,
|
1104 |
+
"step": 6850
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 1.9741095694464312,
|
1108 |
+
"grad_norm": 0.4865065014657903,
|
1109 |
+
"learning_rate": 9.218074484421977e-06,
|
1110 |
+
"loss": 1.3329,
|
1111 |
+
"step": 6900
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 1.988413674724646,
|
1115 |
+
"grad_norm": 0.46233352981690246,
|
1116 |
+
"learning_rate": 9.206544616434249e-06,
|
1117 |
+
"loss": 1.3193,
|
1118 |
+
"step": 6950
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 2.0027177800028606,
|
1122 |
+
"grad_norm": 0.4748345037256569,
|
1123 |
+
"learning_rate": 9.194938575322973e-06,
|
1124 |
+
"loss": 1.3137,
|
1125 |
+
"step": 7000
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 2.0170218852810757,
|
1129 |
+
"grad_norm": 0.3961349395717629,
|
1130 |
+
"learning_rate": 9.183256599603672e-06,
|
1131 |
+
"loss": 1.2981,
|
1132 |
+
"step": 7050
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"epoch": 2.0313259905592904,
|
1136 |
+
"grad_norm": 0.6284979836068443,
|
1137 |
+
"learning_rate": 9.171498929352388e-06,
|
1138 |
+
"loss": 1.2961,
|
1139 |
+
"step": 7100
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 2.0456300958375055,
|
1143 |
+
"grad_norm": 0.6558610249594138,
|
1144 |
+
"learning_rate": 9.159665806200766e-06,
|
1145 |
+
"loss": 1.2913,
|
1146 |
+
"step": 7150
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 2.0599342011157202,
|
1150 |
+
"grad_norm": 0.45514976033924853,
|
1151 |
+
"learning_rate": 9.147757473331082e-06,
|
1152 |
+
"loss": 1.2906,
|
1153 |
+
"step": 7200
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 2.0599342011157202,
|
1157 |
+
"eval_loss": 1.3430439233779907,
|
1158 |
+
"eval_runtime": 14.0262,
|
1159 |
+
"eval_samples_per_second": 71.295,
|
1160 |
+
"eval_steps_per_second": 2.281,
|
1161 |
+
"step": 7200
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 2.074238306393935,
|
1165 |
+
"grad_norm": 0.5426461545993814,
|
1166 |
+
"learning_rate": 9.135774175471244e-06,
|
1167 |
+
"loss": 1.3004,
|
1168 |
+
"step": 7250
|
1169 |
+
},
|
1170 |
+
{
|
1171 |
+
"epoch": 2.08854241167215,
|
1172 |
+
"grad_norm": 0.6005516516830625,
|
1173 |
+
"learning_rate": 9.123716158889765e-06,
|
1174 |
+
"loss": 1.292,
|
1175 |
+
"step": 7300
|
1176 |
+
},
|
1177 |
+
{
|
1178 |
+
"epoch": 2.1028465169503647,
|
1179 |
+
"grad_norm": 0.9639752009743953,
|
1180 |
+
"learning_rate": 9.111583671390697e-06,
|
1181 |
+
"loss": 1.2862,
|
1182 |
+
"step": 7350
|
1183 |
+
},
|
1184 |
+
{
|
1185 |
+
"epoch": 2.1171506222285794,
|
1186 |
+
"grad_norm": 0.4488649957289315,
|
1187 |
+
"learning_rate": 9.09937696230855e-06,
|
1188 |
+
"loss": 1.3036,
|
1189 |
+
"step": 7400
|
1190 |
+
},
|
1191 |
+
{
|
1192 |
+
"epoch": 2.1314547275067945,
|
1193 |
+
"grad_norm": 0.7721978784000721,
|
1194 |
+
"learning_rate": 9.087096282503152e-06,
|
1195 |
+
"loss": 1.2901,
|
1196 |
+
"step": 7450
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 2.1457588327850092,
|
1200 |
+
"grad_norm": 0.4782857255612778,
|
1201 |
+
"learning_rate": 9.074741884354507e-06,
|
1202 |
+
"loss": 1.2946,
|
1203 |
+
"step": 7500
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 2.1600629380632244,
|
1207 |
+
"grad_norm": 0.43220427000612477,
|
1208 |
+
"learning_rate": 9.062314021757603e-06,
|
1209 |
+
"loss": 1.2921,
|
1210 |
+
"step": 7550
|
1211 |
+
},
|
1212 |
+
{
|
1213 |
+
"epoch": 2.174367043341439,
|
1214 |
+
"grad_norm": 0.5795623059587878,
|
1215 |
+
"learning_rate": 9.049812950117191e-06,
|
1216 |
+
"loss": 1.279,
|
1217 |
+
"step": 7600
|
1218 |
+
},
|
1219 |
+
{
|
1220 |
+
"epoch": 2.174367043341439,
|
1221 |
+
"eval_loss": 1.3394057750701904,
|
1222 |
+
"eval_runtime": 14.0446,
|
1223 |
+
"eval_samples_per_second": 71.202,
|
1224 |
+
"eval_steps_per_second": 2.278,
|
1225 |
+
"step": 7600
|
1226 |
+
},
|
1227 |
+
{
|
1228 |
+
"epoch": 2.1886711486196537,
|
1229 |
+
"grad_norm": 0.5713295331254999,
|
1230 |
+
"learning_rate": 9.037238926342544e-06,
|
1231 |
+
"loss": 1.2909,
|
1232 |
+
"step": 7650
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 2.202975253897869,
|
1236 |
+
"grad_norm": 0.45758770778160607,
|
1237 |
+
"learning_rate": 9.02459220884217e-06,
|
1238 |
+
"loss": 1.3009,
|
1239 |
+
"step": 7700
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 2.2172793591760835,
|
1243 |
+
"grad_norm": 0.4138476142224768,
|
1244 |
+
"learning_rate": 9.011873057518503e-06,
|
1245 |
+
"loss": 1.2901,
|
1246 |
+
"step": 7750
|
1247 |
+
},
|
1248 |
+
{
|
1249 |
+
"epoch": 2.2315834644542982,
|
1250 |
+
"grad_norm": 0.5401623167342202,
|
1251 |
+
"learning_rate": 8.999081733762568e-06,
|
1252 |
+
"loss": 1.2883,
|
1253 |
+
"step": 7800
|
1254 |
+
},
|
1255 |
+
{
|
1256 |
+
"epoch": 2.2458875697325134,
|
1257 |
+
"grad_norm": 0.4225832679092138,
|
1258 |
+
"learning_rate": 8.986218500448598e-06,
|
1259 |
+
"loss": 1.2986,
|
1260 |
+
"step": 7850
|
1261 |
+
},
|
1262 |
+
{
|
1263 |
+
"epoch": 2.260191675010728,
|
1264 |
+
"grad_norm": 0.578769239923742,
|
1265 |
+
"learning_rate": 8.973283621928644e-06,
|
1266 |
+
"loss": 1.2932,
|
1267 |
+
"step": 7900
|
1268 |
+
},
|
1269 |
+
{
|
1270 |
+
"epoch": 2.2744957802889427,
|
1271 |
+
"grad_norm": 0.42471537710995716,
|
1272 |
+
"learning_rate": 8.96027736402713e-06,
|
1273 |
+
"loss": 1.2911,
|
1274 |
+
"step": 7950
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 2.288799885567158,
|
1278 |
+
"grad_norm": 0.45640421971129197,
|
1279 |
+
"learning_rate": 8.947199994035402e-06,
|
1280 |
+
"loss": 1.2795,
|
1281 |
+
"step": 8000
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 2.288799885567158,
|
1285 |
+
"eval_loss": 1.3331786394119263,
|
1286 |
+
"eval_runtime": 13.9979,
|
1287 |
+
"eval_samples_per_second": 71.439,
|
1288 |
+
"eval_steps_per_second": 2.286,
|
1289 |
+
"step": 8000
|
1290 |
+
},
|
1291 |
+
{
|
1292 |
+
"epoch": 2.3031039908453725,
|
1293 |
+
"grad_norm": 0.5262528524865082,
|
1294 |
+
"learning_rate": 8.934051780706226e-06,
|
1295 |
+
"loss": 1.2847,
|
1296 |
+
"step": 8050
|
1297 |
+
},
|
1298 |
+
{
|
1299 |
+
"epoch": 2.3174080961235877,
|
1300 |
+
"grad_norm": 0.4308615143171633,
|
1301 |
+
"learning_rate": 8.920832994248268e-06,
|
1302 |
+
"loss": 1.2942,
|
1303 |
+
"step": 8100
|
1304 |
+
},
|
1305 |
+
{
|
1306 |
+
"epoch": 2.3317122014018024,
|
1307 |
+
"grad_norm": 0.46124798716185816,
|
1308 |
+
"learning_rate": 8.907543906320542e-06,
|
1309 |
+
"loss": 1.297,
|
1310 |
+
"step": 8150
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 2.346016306680017,
|
1314 |
+
"grad_norm": 0.4538526984132291,
|
1315 |
+
"learning_rate": 8.894184790026823e-06,
|
1316 |
+
"loss": 1.2832,
|
1317 |
+
"step": 8200
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 2.360320411958232,
|
1321 |
+
"grad_norm": 0.4645888620271419,
|
1322 |
+
"learning_rate": 8.880755919910048e-06,
|
1323 |
+
"loss": 1.2891,
|
1324 |
+
"step": 8250
|
1325 |
+
},
|
1326 |
+
{
|
1327 |
+
"epoch": 2.374624517236447,
|
1328 |
+
"grad_norm": 0.5676282155239492,
|
1329 |
+
"learning_rate": 8.867257571946646e-06,
|
1330 |
+
"loss": 1.295,
|
1331 |
+
"step": 8300
|
1332 |
+
},
|
1333 |
+
{
|
1334 |
+
"epoch": 2.3889286225146615,
|
1335 |
+
"grad_norm": 0.429927163826217,
|
1336 |
+
"learning_rate": 8.853690023540898e-06,
|
1337 |
+
"loss": 1.2917,
|
1338 |
+
"step": 8350
|
1339 |
+
},
|
1340 |
+
{
|
1341 |
+
"epoch": 2.4032327277928767,
|
1342 |
+
"grad_norm": 0.4224712416764881,
|
1343 |
+
"learning_rate": 8.840053553519216e-06,
|
1344 |
+
"loss": 1.2793,
|
1345 |
+
"step": 8400
|
1346 |
+
},
|
1347 |
+
{
|
1348 |
+
"epoch": 2.4032327277928767,
|
1349 |
+
"eval_loss": 1.3279030323028564,
|
1350 |
+
"eval_runtime": 14.0803,
|
1351 |
+
"eval_samples_per_second": 71.021,
|
1352 |
+
"eval_steps_per_second": 2.273,
|
1353 |
+
"step": 8400
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 2.4175368330710914,
|
1357 |
+
"grad_norm": 0.3947030765297477,
|
1358 |
+
"learning_rate": 8.82634844212442e-06,
|
1359 |
+
"loss": 1.288,
|
1360 |
+
"step": 8450
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 2.431840938349306,
|
1364 |
+
"grad_norm": 0.4497937878369028,
|
1365 |
+
"learning_rate": 8.81257497100998e-06,
|
1366 |
+
"loss": 1.2949,
|
1367 |
+
"step": 8500
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 2.446145043627521,
|
1371 |
+
"grad_norm": 0.4948619624780139,
|
1372 |
+
"learning_rate": 8.79873342323422e-06,
|
1373 |
+
"loss": 1.2879,
|
1374 |
+
"step": 8550
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 2.460449148905736,
|
1378 |
+
"grad_norm": 0.8841779211631144,
|
1379 |
+
"learning_rate": 8.78482408325451e-06,
|
1380 |
+
"loss": 1.2842,
|
1381 |
+
"step": 8600
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 2.474753254183951,
|
1385 |
+
"grad_norm": 0.44783586114307045,
|
1386 |
+
"learning_rate": 8.770847236921412e-06,
|
1387 |
+
"loss": 1.2868,
|
1388 |
+
"step": 8650
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 2.4890573594621657,
|
1392 |
+
"grad_norm": 0.6387382536339177,
|
1393 |
+
"learning_rate": 8.756803171472817e-06,
|
1394 |
+
"loss": 1.2821,
|
1395 |
+
"step": 8700
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 2.5033614647403803,
|
1399 |
+
"grad_norm": 0.4704200568795867,
|
1400 |
+
"learning_rate": 8.742692175528027e-06,
|
1401 |
+
"loss": 1.2854,
|
1402 |
+
"step": 8750
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 2.5176655700185955,
|
1406 |
+
"grad_norm": 0.4776364379876357,
|
1407 |
+
"learning_rate": 8.728514539081837e-06,
|
1408 |
+
"loss": 1.2814,
|
1409 |
+
"step": 8800
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 2.5176655700185955,
|
1413 |
+
"eval_loss": 1.3429194688796997,
|
1414 |
+
"eval_runtime": 13.9117,
|
1415 |
+
"eval_samples_per_second": 71.882,
|
1416 |
+
"eval_steps_per_second": 2.3,
|
1417 |
+
"step": 8800
|
1418 |
+
},
|
1419 |
+
{
|
1420 |
+
"epoch": 2.53196967529681,
|
1421 |
+
"grad_norm": 0.7082070517295844,
|
1422 |
+
"learning_rate": 8.714270553498567e-06,
|
1423 |
+
"loss": 1.2851,
|
1424 |
+
"step": 8850
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 2.5462737805750253,
|
1428 |
+
"grad_norm": 0.4514295526886292,
|
1429 |
+
"learning_rate": 8.699960511506077e-06,
|
1430 |
+
"loss": 1.2809,
|
1431 |
+
"step": 8900
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 2.56057788585324,
|
1435 |
+
"grad_norm": 0.6853925555348788,
|
1436 |
+
"learning_rate": 8.685584707189749e-06,
|
1437 |
+
"loss": 1.2961,
|
1438 |
+
"step": 8950
|
1439 |
+
},
|
1440 |
+
{
|
1441 |
+
"epoch": 2.5748819911314547,
|
1442 |
+
"grad_norm": 0.4538248869842651,
|
1443 |
+
"learning_rate": 8.671143435986447e-06,
|
1444 |
+
"loss": 1.2893,
|
1445 |
+
"step": 9000
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 2.5891860964096693,
|
1449 |
+
"grad_norm": 0.45631276178983216,
|
1450 |
+
"learning_rate": 8.656636994678447e-06,
|
1451 |
+
"loss": 1.2921,
|
1452 |
+
"step": 9050
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"epoch": 2.6034902016878845,
|
1456 |
+
"grad_norm": 0.4181402292311998,
|
1457 |
+
"learning_rate": 8.642065681387329e-06,
|
1458 |
+
"loss": 1.2849,
|
1459 |
+
"step": 9100
|
1460 |
+
},
|
1461 |
+
{
|
1462 |
+
"epoch": 2.617794306966099,
|
1463 |
+
"grad_norm": 0.4679963507707488,
|
1464 |
+
"learning_rate": 8.627429795567858e-06,
|
1465 |
+
"loss": 1.2789,
|
1466 |
+
"step": 9150
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 2.6320984122443143,
|
1470 |
+
"grad_norm": 0.4065327115468989,
|
1471 |
+
"learning_rate": 8.61272963800183e-06,
|
1472 |
+
"loss": 1.2805,
|
1473 |
+
"step": 9200
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 2.6320984122443143,
|
1477 |
+
"eval_loss": 1.3250114917755127,
|
1478 |
+
"eval_runtime": 14.1045,
|
1479 |
+
"eval_samples_per_second": 70.899,
|
1480 |
+
"eval_steps_per_second": 2.269,
|
1481 |
+
"step": 9200
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"epoch": 2.646402517522529,
|
1485 |
+
"grad_norm": 0.442868220510357,
|
1486 |
+
"learning_rate": 8.597965510791883e-06,
|
1487 |
+
"loss": 1.2878,
|
1488 |
+
"step": 9250
|
1489 |
+
},
|
1490 |
+
{
|
1491 |
+
"epoch": 2.6607066228007437,
|
1492 |
+
"grad_norm": 0.4167482981358102,
|
1493 |
+
"learning_rate": 8.5831377173553e-06,
|
1494 |
+
"loss": 1.2812,
|
1495 |
+
"step": 9300
|
1496 |
+
},
|
1497 |
+
{
|
1498 |
+
"epoch": 2.675010728078959,
|
1499 |
+
"grad_norm": 0.4090769340560565,
|
1500 |
+
"learning_rate": 8.568246562417762e-06,
|
1501 |
+
"loss": 1.2933,
|
1502 |
+
"step": 9350
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 2.6893148333571735,
|
1506 |
+
"grad_norm": 0.42518490969522255,
|
1507 |
+
"learning_rate": 8.553292352007096e-06,
|
1508 |
+
"loss": 1.2864,
|
1509 |
+
"step": 9400
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 2.7036189386353886,
|
1513 |
+
"grad_norm": 0.4463014716471431,
|
1514 |
+
"learning_rate": 8.538275393446976e-06,
|
1515 |
+
"loss": 1.2857,
|
1516 |
+
"step": 9450
|
1517 |
+
},
|
1518 |
+
{
|
1519 |
+
"epoch": 2.7179230439136033,
|
1520 |
+
"grad_norm": 0.45596948523932324,
|
1521 |
+
"learning_rate": 8.523195995350613e-06,
|
1522 |
+
"loss": 1.2835,
|
1523 |
+
"step": 9500
|
1524 |
+
},
|
1525 |
+
{
|
1526 |
+
"epoch": 2.732227149191818,
|
1527 |
+
"grad_norm": 0.4205155827535561,
|
1528 |
+
"learning_rate": 8.508054467614417e-06,
|
1529 |
+
"loss": 1.2849,
|
1530 |
+
"step": 9550
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"epoch": 2.7465312544700327,
|
1534 |
+
"grad_norm": 0.48430008888282355,
|
1535 |
+
"learning_rate": 8.492851121411614e-06,
|
1536 |
+
"loss": 1.2789,
|
1537 |
+
"step": 9600
|
1538 |
+
},
|
1539 |
+
{
|
1540 |
+
"epoch": 2.7465312544700327,
|
1541 |
+
"eval_loss": 1.3283616304397583,
|
1542 |
+
"eval_runtime": 14.0066,
|
1543 |
+
"eval_samples_per_second": 71.395,
|
1544 |
+
"eval_steps_per_second": 2.285,
|
1545 |
+
"step": 9600
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 2.760835359748248,
|
1549 |
+
"grad_norm": 0.5759994995680412,
|
1550 |
+
"learning_rate": 8.477586269185868e-06,
|
1551 |
+
"loss": 1.2807,
|
1552 |
+
"step": 9650
|
1553 |
+
},
|
1554 |
+
{
|
1555 |
+
"epoch": 2.7751394650264625,
|
1556 |
+
"grad_norm": 0.4062177321040095,
|
1557 |
+
"learning_rate": 8.462260224644848e-06,
|
1558 |
+
"loss": 1.2786,
|
1559 |
+
"step": 9700
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"epoch": 2.7894435703046776,
|
1563 |
+
"grad_norm": 0.40744982615324904,
|
1564 |
+
"learning_rate": 8.446873302753783e-06,
|
1565 |
+
"loss": 1.288,
|
1566 |
+
"step": 9750
|
1567 |
+
},
|
1568 |
+
{
|
1569 |
+
"epoch": 2.8037476755828923,
|
1570 |
+
"grad_norm": 0.4351554021842912,
|
1571 |
+
"learning_rate": 8.431425819728998e-06,
|
1572 |
+
"loss": 1.2809,
|
1573 |
+
"step": 9800
|
1574 |
+
},
|
1575 |
+
{
|
1576 |
+
"epoch": 2.818051780861107,
|
1577 |
+
"grad_norm": 0.4565206220601423,
|
1578 |
+
"learning_rate": 8.415918093031403e-06,
|
1579 |
+
"loss": 1.2761,
|
1580 |
+
"step": 9850
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 2.832355886139322,
|
1584 |
+
"grad_norm": 0.4286148896345825,
|
1585 |
+
"learning_rate": 8.400350441359976e-06,
|
1586 |
+
"loss": 1.2738,
|
1587 |
+
"step": 9900
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 2.846659991417537,
|
1591 |
+
"grad_norm": 0.4091019318117471,
|
1592 |
+
"learning_rate": 8.384723184645211e-06,
|
1593 |
+
"loss": 1.2756,
|
1594 |
+
"step": 9950
|
1595 |
+
},
|
1596 |
+
{
|
1597 |
+
"epoch": 2.860964096695752,
|
1598 |
+
"grad_norm": 0.5366072380832926,
|
1599 |
+
"learning_rate": 8.369036644042546e-06,
|
1600 |
+
"loss": 1.264,
|
1601 |
+
"step": 10000
|
1602 |
+
},
|
1603 |
+
{
|
1604 |
+
"epoch": 2.860964096695752,
|
1605 |
+
"eval_loss": 1.319417953491211,
|
1606 |
+
"eval_runtime": 14.0197,
|
1607 |
+
"eval_samples_per_second": 71.328,
|
1608 |
+
"eval_steps_per_second": 2.283,
|
1609 |
+
"step": 10000
|
1610 |
+
},
|
1611 |
+
{
|
1612 |
+
"epoch": 2.8752682019739666,
|
1613 |
+
"grad_norm": 0.39891877892139094,
|
1614 |
+
"learning_rate": 8.353291141925763e-06,
|
1615 |
+
"loss": 1.2714,
|
1616 |
+
"step": 10050
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 2.8895723072521813,
|
1620 |
+
"grad_norm": 0.43116855479870975,
|
1621 |
+
"learning_rate": 8.337487001880353e-06,
|
1622 |
+
"loss": 1.276,
|
1623 |
+
"step": 10100
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 2.903876412530396,
|
1627 |
+
"grad_norm": 0.43311934645181527,
|
1628 |
+
"learning_rate": 8.32162454869688e-06,
|
1629 |
+
"loss": 1.2733,
|
1630 |
+
"step": 10150
|
1631 |
+
},
|
1632 |
+
{
|
1633 |
+
"epoch": 2.918180517808611,
|
1634 |
+
"grad_norm": 0.4236540903742665,
|
1635 |
+
"learning_rate": 8.305704108364301e-06,
|
1636 |
+
"loss": 1.2758,
|
1637 |
+
"step": 10200
|
1638 |
+
},
|
1639 |
+
{
|
1640 |
+
"epoch": 2.932484623086826,
|
1641 |
+
"grad_norm": 0.4815023613318688,
|
1642 |
+
"learning_rate": 8.289726008063265e-06,
|
1643 |
+
"loss": 1.275,
|
1644 |
+
"step": 10250
|
1645 |
+
},
|
1646 |
+
{
|
1647 |
+
"epoch": 2.946788728365041,
|
1648 |
+
"grad_norm": 0.43681054268020525,
|
1649 |
+
"learning_rate": 8.273690576159383e-06,
|
1650 |
+
"loss": 1.2789,
|
1651 |
+
"step": 10300
|
1652 |
+
},
|
1653 |
+
{
|
1654 |
+
"epoch": 2.9610928336432556,
|
1655 |
+
"grad_norm": 0.4370480894359291,
|
1656 |
+
"learning_rate": 8.257598142196496e-06,
|
1657 |
+
"loss": 1.267,
|
1658 |
+
"step": 10350
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 2.9753969389214703,
|
1662 |
+
"grad_norm": 0.4461842695375769,
|
1663 |
+
"learning_rate": 8.241449036889892e-06,
|
1664 |
+
"loss": 1.2734,
|
1665 |
+
"step": 10400
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 2.9753969389214703,
|
1669 |
+
"eval_loss": 1.3316634893417358,
|
1670 |
+
"eval_runtime": 13.9113,
|
1671 |
+
"eval_samples_per_second": 71.884,
|
1672 |
+
"eval_steps_per_second": 2.3,
|
1673 |
+
"step": 10400
|
1674 |
+
},
|
1675 |
+
{
|
1676 |
+
"epoch": 2.9897010441996854,
|
1677 |
+
"grad_norm": 0.44034804073477984,
|
1678 |
+
"learning_rate": 8.225243592119501e-06,
|
1679 |
+
"loss": 1.2736,
|
1680 |
+
"step": 10450
|
1681 |
+
},
|
1682 |
+
{
|
1683 |
+
"epoch": 3.0040051494779,
|
1684 |
+
"grad_norm": 0.4720256474307512,
|
1685 |
+
"learning_rate": 8.208982140923095e-06,
|
1686 |
+
"loss": 1.2694,
|
1687 |
+
"step": 10500
|
1688 |
+
},
|
1689 |
+
{
|
1690 |
+
"epoch": 3.0183092547561152,
|
1691 |
+
"grad_norm": 0.6347562232882346,
|
1692 |
+
"learning_rate": 8.192665017489431e-06,
|
1693 |
+
"loss": 1.2336,
|
1694 |
+
"step": 10550
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 3.03261336003433,
|
1698 |
+
"grad_norm": 0.37981139577002,
|
1699 |
+
"learning_rate": 8.17629255715138e-06,
|
1700 |
+
"loss": 1.2494,
|
1701 |
+
"step": 10600
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 3.0469174653125446,
|
1705 |
+
"grad_norm": 0.7105885207992017,
|
1706 |
+
"learning_rate": 8.159865096379046e-06,
|
1707 |
+
"loss": 1.2397,
|
1708 |
+
"step": 10650
|
1709 |
+
},
|
1710 |
+
{
|
1711 |
+
"epoch": 3.0612215705907597,
|
1712 |
+
"grad_norm": 0.43006752774126733,
|
1713 |
+
"learning_rate": 8.14338297277284e-06,
|
1714 |
+
"loss": 1.2384,
|
1715 |
+
"step": 10700
|
1716 |
+
},
|
1717 |
+
{
|
1718 |
+
"epoch": 3.0755256758689744,
|
1719 |
+
"grad_norm": 0.4261194480956777,
|
1720 |
+
"learning_rate": 8.126846525056555e-06,
|
1721 |
+
"loss": 1.2436,
|
1722 |
+
"step": 10750
|
1723 |
+
},
|
1724 |
+
{
|
1725 |
+
"epoch": 3.089829781147189,
|
1726 |
+
"grad_norm": 0.45249834468920586,
|
1727 |
+
"learning_rate": 8.110256093070393e-06,
|
1728 |
+
"loss": 1.252,
|
1729 |
+
"step": 10800
|
1730 |
+
},
|
1731 |
+
{
|
1732 |
+
"epoch": 3.089829781147189,
|
1733 |
+
"eval_loss": 1.324701189994812,
|
1734 |
+
"eval_runtime": 14.0291,
|
1735 |
+
"eval_samples_per_second": 71.28,
|
1736 |
+
"eval_steps_per_second": 2.281,
|
1737 |
+
"step": 10800
|
1738 |
+
}
|
1739 |
+
],
|
1740 |
+
"logging_steps": 50,
|
1741 |
+
"max_steps": 34950,
|
1742 |
+
"num_input_tokens_seen": 0,
|
1743 |
+
"num_train_epochs": 10,
|
1744 |
+
"save_steps": 400,
|
1745 |
+
"stateful_callbacks": {
|
1746 |
+
"TrainerControl": {
|
1747 |
+
"args": {
|
1748 |
+
"should_epoch_stop": false,
|
1749 |
+
"should_evaluate": false,
|
1750 |
+
"should_log": false,
|
1751 |
+
"should_save": true,
|
1752 |
+
"should_training_stop": false
|
1753 |
+
},
|
1754 |
+
"attributes": {}
|
1755 |
+
}
|
1756 |
+
},
|
1757 |
+
"total_flos": 1.0328768862224384e+16,
|
1758 |
+
"train_batch_size": 4,
|
1759 |
+
"trial_name": null,
|
1760 |
+
"trial_params": null
|
1761 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d70f6b7223186f679f09a0f4404fc3f434bfeac6c1e1629dfecf969286e228b1
|
3 |
+
size 7224
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|