rabiulawal commited on
Commit
c322678
·
verified ·
1 Parent(s): d78bf26

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/stardoc/escher/checkpoints/Emu3-Base-SFT-without_cot-Mar04_256_lr1e-4/checkpoint-8400",
3
+ "architectures": [
4
+ "Emu3ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.1,
7
+ "auto_map": {
8
+ "AutoConfig": "BAAI/Emu3-Stage1--configuration_emu3.Emu3Config",
9
+ "AutoModelForCausalLM": "BAAI/Emu3-Stage1--modeling_emu3.Emu3ForCausalLM"
10
+ },
11
+ "boi_token_id": 151852,
12
+ "bos_token_id": 151849,
13
+ "eof_token_id": 151847,
14
+ "eoi_token_id": 151853,
15
+ "eol_token_id": 151846,
16
+ "eos_token_id": 151850,
17
+ "hidden_act": "silu",
18
+ "hidden_size": 4096,
19
+ "image_area": 65536,
20
+ "img_token_id": 151851,
21
+ "initializer_range": 0.02,
22
+ "intermediate_size": 14336,
23
+ "max_position_embeddings": 4300,
24
+ "model_type": "Emu3",
25
+ "num_attention_heads": 32,
26
+ "num_hidden_layers": 32,
27
+ "num_key_value_heads": 8,
28
+ "pad_token_id": 151643,
29
+ "pretraining_tp": 1,
30
+ "rms_norm_eps": 1e-05,
31
+ "rope_scaling": null,
32
+ "rope_theta": 1000000.0,
33
+ "tie_word_embeddings": false,
34
+ "torch_dtype": "bfloat16",
35
+ "transformers_version": "4.44.0",
36
+ "use_cache": false,
37
+ "vocab_size": 184622
38
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151849,
4
+ "eos_token_id": 151850,
5
+ "pad_token_id": 151643,
6
+ "transformers_version": "4.44.0"
7
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step10800
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c950d53ff85a875821ef8d5cb755585ca5113fea940843a458f280a6625c2d2d
3
+ size 4884766656
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6015ee78d8bbce3a82ecdfb889a81f0ca7f163a441ff312d06c578402528f9b5
3
+ size 4999819320
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ec098dadee1d0ec80425cd842767ff3f9bdb624db80d414167515503cf1c1b5
3
+ size 4915916184
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d59e70779b24544e822436ab27875b960c8d9ae8e2725aa0dfb535e64119bae
3
+ size 2183554760
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16984023040
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
296
+ "model.norm.weight": "model-00004-of-00004.safetensors"
297
+ }
298
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0020cac19127fc67d6d5960e15fda43dbcb8fb80e14be25ac40ff69dfb58144c
3
+ size 15984
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:143f2bf9d901ff901e9e2154e08982661143a02b60290b2ce5922def4b4ba3d6
3
+ size 15984
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:751b067f191bcd682bf2fee60c8557dd60e9eaab4d77cd95921737f386fdb4e6
3
+ size 15984
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3f7105e072e76c4955155ddbec3394988e98ef3304c216e70c188559608cc06
3
+ size 15984
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d6902f393a7113d4eab84561276dd26e0fe79dba1e4a516fa1564e5b92d272e
3
+ size 15984
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04193a132d9e2c1feb69b5b27806970167a2247b1136fcf0099dc3be9a10d31d
3
+ size 15984
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:277ab7a7aa8282c34b4c5f04929859adbbd61df39dd62dd9a9a841f3b8bb888b
3
+ size 15984
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:823437db304bb4cf1bd59d5bb2e1eca8d99f15af66dd939c8756d68d5a12f879
3
+ size 15984
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf41411111ad42f2c42c34fec153aaf1de551d4b135b9cfa6a9021e2b34de0eb
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,1761 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.089829781147189,
5
+ "eval_steps": 400,
6
+ "global_step": 10800,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.014304105278214848,
13
+ "grad_norm": 1.6012784676437102,
14
+ "learning_rate": 1.6666666666666667e-06,
15
+ "loss": 4.4038,
16
+ "step": 50
17
+ },
18
+ {
19
+ "epoch": 0.028608210556429696,
20
+ "grad_norm": 0.81484251583879,
21
+ "learning_rate": 3.3333333333333333e-06,
22
+ "loss": 3.6036,
23
+ "step": 100
24
+ },
25
+ {
26
+ "epoch": 0.04291231583464454,
27
+ "grad_norm": 3.9762696099154904,
28
+ "learning_rate": 5e-06,
29
+ "loss": 3.0207,
30
+ "step": 150
31
+ },
32
+ {
33
+ "epoch": 0.05721642111285939,
34
+ "grad_norm": 3.057952660211588,
35
+ "learning_rate": 6.666666666666667e-06,
36
+ "loss": 2.4324,
37
+ "step": 200
38
+ },
39
+ {
40
+ "epoch": 0.07152052639107424,
41
+ "grad_norm": 2.092719622855296,
42
+ "learning_rate": 8.333333333333334e-06,
43
+ "loss": 2.222,
44
+ "step": 250
45
+ },
46
+ {
47
+ "epoch": 0.08582463166928908,
48
+ "grad_norm": 6.08825143706115,
49
+ "learning_rate": 1e-05,
50
+ "loss": 2.1021,
51
+ "step": 300
52
+ },
53
+ {
54
+ "epoch": 0.10012873694750393,
55
+ "grad_norm": 2.493878945601314,
56
+ "learning_rate": 9.999953760295448e-06,
57
+ "loss": 1.9831,
58
+ "step": 350
59
+ },
60
+ {
61
+ "epoch": 0.11443284222571878,
62
+ "grad_norm": 4.462960292469778,
63
+ "learning_rate": 9.999815042132062e-06,
64
+ "loss": 1.917,
65
+ "step": 400
66
+ },
67
+ {
68
+ "epoch": 0.11443284222571878,
69
+ "eval_loss": 1.808639645576477,
70
+ "eval_runtime": 14.2096,
71
+ "eval_samples_per_second": 70.375,
72
+ "eval_steps_per_second": 2.252,
73
+ "step": 400
74
+ },
75
+ {
76
+ "epoch": 0.12873694750393364,
77
+ "grad_norm": 2.038795534490349,
78
+ "learning_rate": 9.999583848360633e-06,
79
+ "loss": 1.8614,
80
+ "step": 450
81
+ },
82
+ {
83
+ "epoch": 0.1430410527821485,
84
+ "grad_norm": 2.259377386606669,
85
+ "learning_rate": 9.999260183732424e-06,
86
+ "loss": 1.8105,
87
+ "step": 500
88
+ },
89
+ {
90
+ "epoch": 0.1573451580603633,
91
+ "grad_norm": 1.6457423711505388,
92
+ "learning_rate": 9.998844054899058e-06,
93
+ "loss": 1.7759,
94
+ "step": 550
95
+ },
96
+ {
97
+ "epoch": 0.17164926333857816,
98
+ "grad_norm": 2.6198123977173555,
99
+ "learning_rate": 9.998335470412393e-06,
100
+ "loss": 1.7508,
101
+ "step": 600
102
+ },
103
+ {
104
+ "epoch": 0.185953368616793,
105
+ "grad_norm": 1.6377415784196128,
106
+ "learning_rate": 9.997734440724333e-06,
107
+ "loss": 1.7156,
108
+ "step": 650
109
+ },
110
+ {
111
+ "epoch": 0.20025747389500786,
112
+ "grad_norm": 3.5293148754159285,
113
+ "learning_rate": 9.997040978186633e-06,
114
+ "loss": 1.7015,
115
+ "step": 700
116
+ },
117
+ {
118
+ "epoch": 0.21456157917322272,
119
+ "grad_norm": 2.3013282525925263,
120
+ "learning_rate": 9.996255097050624e-06,
121
+ "loss": 1.6782,
122
+ "step": 750
123
+ },
124
+ {
125
+ "epoch": 0.22886568445143757,
126
+ "grad_norm": 2.428974082500653,
127
+ "learning_rate": 9.995376813466934e-06,
128
+ "loss": 1.66,
129
+ "step": 800
130
+ },
131
+ {
132
+ "epoch": 0.22886568445143757,
133
+ "eval_loss": 1.5992412567138672,
134
+ "eval_runtime": 14.0538,
135
+ "eval_samples_per_second": 71.155,
136
+ "eval_steps_per_second": 2.277,
137
+ "step": 800
138
+ },
139
+ {
140
+ "epoch": 0.24316978972965242,
141
+ "grad_norm": 2.9094373795416506,
142
+ "learning_rate": 9.994406145485151e-06,
143
+ "loss": 1.6399,
144
+ "step": 850
145
+ },
146
+ {
147
+ "epoch": 0.25747389500786727,
148
+ "grad_norm": 1.5133813561921106,
149
+ "learning_rate": 9.993343113053454e-06,
150
+ "loss": 1.626,
151
+ "step": 900
152
+ },
153
+ {
154
+ "epoch": 0.2717780002860821,
155
+ "grad_norm": 1.3663105185649191,
156
+ "learning_rate": 9.992187738018203e-06,
157
+ "loss": 1.6099,
158
+ "step": 950
159
+ },
160
+ {
161
+ "epoch": 0.286082105564297,
162
+ "grad_norm": 1.3144291853877879,
163
+ "learning_rate": 9.99094004412348e-06,
164
+ "loss": 1.5968,
165
+ "step": 1000
166
+ },
167
+ {
168
+ "epoch": 0.3003862108425118,
169
+ "grad_norm": 1.8770146895064077,
170
+ "learning_rate": 9.989600057010625e-06,
171
+ "loss": 1.5754,
172
+ "step": 1050
173
+ },
174
+ {
175
+ "epoch": 0.3146903161207266,
176
+ "grad_norm": 1.8478210167954083,
177
+ "learning_rate": 9.988167804217682e-06,
178
+ "loss": 1.5711,
179
+ "step": 1100
180
+ },
181
+ {
182
+ "epoch": 0.3289944213989415,
183
+ "grad_norm": 1.5949372088951037,
184
+ "learning_rate": 9.986643315178848e-06,
185
+ "loss": 1.5557,
186
+ "step": 1150
187
+ },
188
+ {
189
+ "epoch": 0.3432985266771563,
190
+ "grad_norm": 1.8431659408457755,
191
+ "learning_rate": 9.98502662122387e-06,
192
+ "loss": 1.5572,
193
+ "step": 1200
194
+ },
195
+ {
196
+ "epoch": 0.3432985266771563,
197
+ "eval_loss": 1.50032639503479,
198
+ "eval_runtime": 14.0776,
199
+ "eval_samples_per_second": 71.035,
200
+ "eval_steps_per_second": 2.273,
201
+ "step": 1200
202
+ },
203
+ {
204
+ "epoch": 0.3576026319553712,
205
+ "grad_norm": 1.3869607567913713,
206
+ "learning_rate": 9.983317755577392e-06,
207
+ "loss": 1.5363,
208
+ "step": 1250
209
+ },
210
+ {
211
+ "epoch": 0.371906737233586,
212
+ "grad_norm": 1.4514189742887267,
213
+ "learning_rate": 9.981516753358274e-06,
214
+ "loss": 1.5358,
215
+ "step": 1300
216
+ },
217
+ {
218
+ "epoch": 0.3862108425118009,
219
+ "grad_norm": 1.4333267526235296,
220
+ "learning_rate": 9.979623651578881e-06,
221
+ "loss": 1.5141,
222
+ "step": 1350
223
+ },
224
+ {
225
+ "epoch": 0.40051494779001573,
226
+ "grad_norm": 0.8580367772458624,
227
+ "learning_rate": 9.977638489144308e-06,
228
+ "loss": 1.523,
229
+ "step": 1400
230
+ },
231
+ {
232
+ "epoch": 0.4148190530682306,
233
+ "grad_norm": 0.9460440332154582,
234
+ "learning_rate": 9.975561306851585e-06,
235
+ "loss": 1.5175,
236
+ "step": 1450
237
+ },
238
+ {
239
+ "epoch": 0.42912315834644543,
240
+ "grad_norm": 1.376203229447874,
241
+ "learning_rate": 9.973392147388847e-06,
242
+ "loss": 1.5126,
243
+ "step": 1500
244
+ },
245
+ {
246
+ "epoch": 0.4434272636246603,
247
+ "grad_norm": 1.5041770784794857,
248
+ "learning_rate": 9.971131055334445e-06,
249
+ "loss": 1.4977,
250
+ "step": 1550
251
+ },
252
+ {
253
+ "epoch": 0.45773136890287514,
254
+ "grad_norm": 1.095703863839786,
255
+ "learning_rate": 9.968778077156035e-06,
256
+ "loss": 1.4877,
257
+ "step": 1600
258
+ },
259
+ {
260
+ "epoch": 0.45773136890287514,
261
+ "eval_loss": 1.4638383388519287,
262
+ "eval_runtime": 14.0468,
263
+ "eval_samples_per_second": 71.191,
264
+ "eval_steps_per_second": 2.278,
265
+ "step": 1600
266
+ },
267
+ {
268
+ "epoch": 0.47203547418109,
269
+ "grad_norm": 1.1967770971190828,
270
+ "learning_rate": 9.966333261209625e-06,
271
+ "loss": 1.4941,
272
+ "step": 1650
273
+ },
274
+ {
275
+ "epoch": 0.48633957945930484,
276
+ "grad_norm": 0.7764934991914475,
277
+ "learning_rate": 9.96379665773858e-06,
278
+ "loss": 1.4943,
279
+ "step": 1700
280
+ },
281
+ {
282
+ "epoch": 0.5006436847375196,
283
+ "grad_norm": 1.1957507140564159,
284
+ "learning_rate": 9.961168318872583e-06,
285
+ "loss": 1.4834,
286
+ "step": 1750
287
+ },
288
+ {
289
+ "epoch": 0.5149477900157345,
290
+ "grad_norm": 0.891291786132535,
291
+ "learning_rate": 9.958448298626576e-06,
292
+ "loss": 1.4766,
293
+ "step": 1800
294
+ },
295
+ {
296
+ "epoch": 0.5292518952939493,
297
+ "grad_norm": 0.9430107046686556,
298
+ "learning_rate": 9.95563665289964e-06,
299
+ "loss": 1.4659,
300
+ "step": 1850
301
+ },
302
+ {
303
+ "epoch": 0.5435560005721642,
304
+ "grad_norm": 1.3583446842191815,
305
+ "learning_rate": 9.952733439473847e-06,
306
+ "loss": 1.4681,
307
+ "step": 1900
308
+ },
309
+ {
310
+ "epoch": 0.557860105850379,
311
+ "grad_norm": 1.010261006024344,
312
+ "learning_rate": 9.94973871801308e-06,
313
+ "loss": 1.4667,
314
+ "step": 1950
315
+ },
316
+ {
317
+ "epoch": 0.572164211128594,
318
+ "grad_norm": 0.8494941104833196,
319
+ "learning_rate": 9.946652550061798e-06,
320
+ "loss": 1.4453,
321
+ "step": 2000
322
+ },
323
+ {
324
+ "epoch": 0.572164211128594,
325
+ "eval_loss": 1.4287511110305786,
326
+ "eval_runtime": 14.0255,
327
+ "eval_samples_per_second": 71.299,
328
+ "eval_steps_per_second": 2.282,
329
+ "step": 2000
330
+ },
331
+ {
332
+ "epoch": 0.5864683164068087,
333
+ "grad_norm": 0.7812469708103134,
334
+ "learning_rate": 9.943474999043775e-06,
335
+ "loss": 1.4496,
336
+ "step": 2050
337
+ },
338
+ {
339
+ "epoch": 0.6007724216850236,
340
+ "grad_norm": 0.7254104161544093,
341
+ "learning_rate": 9.9402061302608e-06,
342
+ "loss": 1.4462,
343
+ "step": 2100
344
+ },
345
+ {
346
+ "epoch": 0.6150765269632384,
347
+ "grad_norm": 1.1402597738223317,
348
+ "learning_rate": 9.93684601089133e-06,
349
+ "loss": 1.4402,
350
+ "step": 2150
351
+ },
352
+ {
353
+ "epoch": 0.6293806322414532,
354
+ "grad_norm": 1.0636750138637265,
355
+ "learning_rate": 9.933394709989109e-06,
356
+ "loss": 1.4514,
357
+ "step": 2200
358
+ },
359
+ {
360
+ "epoch": 0.6436847375196681,
361
+ "grad_norm": 0.6340325583537392,
362
+ "learning_rate": 9.92985229848175e-06,
363
+ "loss": 1.4376,
364
+ "step": 2250
365
+ },
366
+ {
367
+ "epoch": 0.657988842797883,
368
+ "grad_norm": 1.3226650510062645,
369
+ "learning_rate": 9.926218849169284e-06,
370
+ "loss": 1.4404,
371
+ "step": 2300
372
+ },
373
+ {
374
+ "epoch": 0.6722929480760979,
375
+ "grad_norm": 0.9023729708460776,
376
+ "learning_rate": 9.922494436722653e-06,
377
+ "loss": 1.435,
378
+ "step": 2350
379
+ },
380
+ {
381
+ "epoch": 0.6865970533543126,
382
+ "grad_norm": 1.1170660045757717,
383
+ "learning_rate": 9.91867913768218e-06,
384
+ "loss": 1.4275,
385
+ "step": 2400
386
+ },
387
+ {
388
+ "epoch": 0.6865970533543126,
389
+ "eval_loss": 1.4157905578613281,
390
+ "eval_runtime": 14.0561,
391
+ "eval_samples_per_second": 71.143,
392
+ "eval_steps_per_second": 2.277,
393
+ "step": 2400
394
+ },
395
+ {
396
+ "epoch": 0.7009011586325276,
397
+ "grad_norm": 1.164925228192199,
398
+ "learning_rate": 9.914773030456001e-06,
399
+ "loss": 1.4238,
400
+ "step": 2450
401
+ },
402
+ {
403
+ "epoch": 0.7152052639107424,
404
+ "grad_norm": 0.8519530167823217,
405
+ "learning_rate": 9.910776195318448e-06,
406
+ "loss": 1.4347,
407
+ "step": 2500
408
+ },
409
+ {
410
+ "epoch": 0.7295093691889573,
411
+ "grad_norm": 0.7139589978182425,
412
+ "learning_rate": 9.906688714408396e-06,
413
+ "loss": 1.4306,
414
+ "step": 2550
415
+ },
416
+ {
417
+ "epoch": 0.743813474467172,
418
+ "grad_norm": 0.8653282057170465,
419
+ "learning_rate": 9.902510671727583e-06,
420
+ "loss": 1.4229,
421
+ "step": 2600
422
+ },
423
+ {
424
+ "epoch": 0.758117579745387,
425
+ "grad_norm": 0.8247347491114752,
426
+ "learning_rate": 9.898242153138882e-06,
427
+ "loss": 1.4118,
428
+ "step": 2650
429
+ },
430
+ {
431
+ "epoch": 0.7724216850236018,
432
+ "grad_norm": 1.0924147996236788,
433
+ "learning_rate": 9.89388324636453e-06,
434
+ "loss": 1.4322,
435
+ "step": 2700
436
+ },
437
+ {
438
+ "epoch": 0.7867257903018167,
439
+ "grad_norm": 0.842516122122594,
440
+ "learning_rate": 9.889434040984333e-06,
441
+ "loss": 1.4101,
442
+ "step": 2750
443
+ },
444
+ {
445
+ "epoch": 0.8010298955800315,
446
+ "grad_norm": 0.8063486362804477,
447
+ "learning_rate": 9.88489462843382e-06,
448
+ "loss": 1.4191,
449
+ "step": 2800
450
+ },
451
+ {
452
+ "epoch": 0.8010298955800315,
453
+ "eval_loss": 1.4116355180740356,
454
+ "eval_runtime": 13.9779,
455
+ "eval_samples_per_second": 71.542,
456
+ "eval_steps_per_second": 2.289,
457
+ "step": 2800
458
+ },
459
+ {
460
+ "epoch": 0.8153340008582464,
461
+ "grad_norm": 0.6258848452847008,
462
+ "learning_rate": 9.880265102002369e-06,
463
+ "loss": 1.4001,
464
+ "step": 2850
465
+ },
466
+ {
467
+ "epoch": 0.8296381061364612,
468
+ "grad_norm": 0.726517642303323,
469
+ "learning_rate": 9.875545556831283e-06,
470
+ "loss": 1.4086,
471
+ "step": 2900
472
+ },
473
+ {
474
+ "epoch": 0.843942211414676,
475
+ "grad_norm": 0.6713970013254277,
476
+ "learning_rate": 9.870736089911836e-06,
477
+ "loss": 1.4073,
478
+ "step": 2950
479
+ },
480
+ {
481
+ "epoch": 0.8582463166928909,
482
+ "grad_norm": 0.6148598667666052,
483
+ "learning_rate": 9.865836800083291e-06,
484
+ "loss": 1.4093,
485
+ "step": 3000
486
+ },
487
+ {
488
+ "epoch": 0.8725504219711057,
489
+ "grad_norm": 0.5359562950631023,
490
+ "learning_rate": 9.860847788030852e-06,
491
+ "loss": 1.4017,
492
+ "step": 3050
493
+ },
494
+ {
495
+ "epoch": 0.8868545272493206,
496
+ "grad_norm": 0.6194549549607876,
497
+ "learning_rate": 9.855769156283604e-06,
498
+ "loss": 1.4196,
499
+ "step": 3100
500
+ },
501
+ {
502
+ "epoch": 0.9011586325275354,
503
+ "grad_norm": 0.7870838887793197,
504
+ "learning_rate": 9.850601009212408e-06,
505
+ "loss": 1.4039,
506
+ "step": 3150
507
+ },
508
+ {
509
+ "epoch": 0.9154627378057503,
510
+ "grad_norm": 0.8348797495331252,
511
+ "learning_rate": 9.845343453027747e-06,
512
+ "loss": 1.4092,
513
+ "step": 3200
514
+ },
515
+ {
516
+ "epoch": 0.9154627378057503,
517
+ "eval_loss": 1.3961894512176514,
518
+ "eval_runtime": 14.0237,
519
+ "eval_samples_per_second": 71.308,
520
+ "eval_steps_per_second": 2.282,
521
+ "step": 3200
522
+ },
523
+ {
524
+ "epoch": 0.9297668430839651,
525
+ "grad_norm": 0.8890086654120082,
526
+ "learning_rate": 9.839996595777552e-06,
527
+ "loss": 1.3991,
528
+ "step": 3250
529
+ },
530
+ {
531
+ "epoch": 0.94407094836218,
532
+ "grad_norm": 0.8338244522175184,
533
+ "learning_rate": 9.83456054734498e-06,
534
+ "loss": 1.3939,
535
+ "step": 3300
536
+ },
537
+ {
538
+ "epoch": 0.9583750536403948,
539
+ "grad_norm": 0.667534745389414,
540
+ "learning_rate": 9.829035419446156e-06,
541
+ "loss": 1.4052,
542
+ "step": 3350
543
+ },
544
+ {
545
+ "epoch": 0.9726791589186097,
546
+ "grad_norm": 0.830996338803645,
547
+ "learning_rate": 9.823421325627865e-06,
548
+ "loss": 1.408,
549
+ "step": 3400
550
+ },
551
+ {
552
+ "epoch": 0.9869832641968245,
553
+ "grad_norm": 0.752895350030203,
554
+ "learning_rate": 9.81771838126524e-06,
555
+ "loss": 1.3927,
556
+ "step": 3450
557
+ },
558
+ {
559
+ "epoch": 1.0012873694750393,
560
+ "grad_norm": 0.6022807633216317,
561
+ "learning_rate": 9.811926703559374e-06,
562
+ "loss": 1.3947,
563
+ "step": 3500
564
+ },
565
+ {
566
+ "epoch": 1.0155914747532542,
567
+ "grad_norm": 0.7757999852306153,
568
+ "learning_rate": 9.806046411534916e-06,
569
+ "loss": 1.3613,
570
+ "step": 3550
571
+ },
572
+ {
573
+ "epoch": 1.029895580031469,
574
+ "grad_norm": 0.6991186658573486,
575
+ "learning_rate": 9.800077626037633e-06,
576
+ "loss": 1.3805,
577
+ "step": 3600
578
+ },
579
+ {
580
+ "epoch": 1.029895580031469,
581
+ "eval_loss": 1.386795163154602,
582
+ "eval_runtime": 13.9668,
583
+ "eval_samples_per_second": 71.598,
584
+ "eval_steps_per_second": 2.291,
585
+ "step": 3600
586
+ },
587
+ {
588
+ "epoch": 1.044199685309684,
589
+ "grad_norm": 0.6304272914508194,
590
+ "learning_rate": 9.794020469731915e-06,
591
+ "loss": 1.3772,
592
+ "step": 3650
593
+ },
594
+ {
595
+ "epoch": 1.0585037905878987,
596
+ "grad_norm": 0.6127596406721845,
597
+ "learning_rate": 9.787875067098257e-06,
598
+ "loss": 1.3695,
599
+ "step": 3700
600
+ },
601
+ {
602
+ "epoch": 1.0728078958661136,
603
+ "grad_norm": 0.5752396229133312,
604
+ "learning_rate": 9.781641544430703e-06,
605
+ "loss": 1.3737,
606
+ "step": 3750
607
+ },
608
+ {
609
+ "epoch": 1.0871120011443285,
610
+ "grad_norm": 0.8167932197181069,
611
+ "learning_rate": 9.775320029834255e-06,
612
+ "loss": 1.3679,
613
+ "step": 3800
614
+ },
615
+ {
616
+ "epoch": 1.1014161064225432,
617
+ "grad_norm": 0.7493986062078165,
618
+ "learning_rate": 9.76891065322223e-06,
619
+ "loss": 1.3686,
620
+ "step": 3850
621
+ },
622
+ {
623
+ "epoch": 1.115720211700758,
624
+ "grad_norm": 0.6896574555563986,
625
+ "learning_rate": 9.762413546313597e-06,
626
+ "loss": 1.3688,
627
+ "step": 3900
628
+ },
629
+ {
630
+ "epoch": 1.130024316978973,
631
+ "grad_norm": 0.54479225381951,
632
+ "learning_rate": 9.755828842630269e-06,
633
+ "loss": 1.3577,
634
+ "step": 3950
635
+ },
636
+ {
637
+ "epoch": 1.144328422257188,
638
+ "grad_norm": 0.8631407967474234,
639
+ "learning_rate": 9.749156677494357e-06,
640
+ "loss": 1.3791,
641
+ "step": 4000
642
+ },
643
+ {
644
+ "epoch": 1.144328422257188,
645
+ "eval_loss": 1.3818904161453247,
646
+ "eval_runtime": 14.0228,
647
+ "eval_samples_per_second": 71.312,
648
+ "eval_steps_per_second": 2.282,
649
+ "step": 4000
650
+ },
651
+ {
652
+ "epoch": 1.1586325275354026,
653
+ "grad_norm": 0.6269351505110898,
654
+ "learning_rate": 9.742397188025394e-06,
655
+ "loss": 1.3672,
656
+ "step": 4050
657
+ },
658
+ {
659
+ "epoch": 1.1729366328136175,
660
+ "grad_norm": 0.5964977170501943,
661
+ "learning_rate": 9.735550513137513e-06,
662
+ "loss": 1.3579,
663
+ "step": 4100
664
+ },
665
+ {
666
+ "epoch": 1.1872407380918324,
667
+ "grad_norm": 0.6696040499572795,
668
+ "learning_rate": 9.728616793536588e-06,
669
+ "loss": 1.3704,
670
+ "step": 4150
671
+ },
672
+ {
673
+ "epoch": 1.2015448433700473,
674
+ "grad_norm": 0.7153959218092929,
675
+ "learning_rate": 9.721596171717352e-06,
676
+ "loss": 1.3631,
677
+ "step": 4200
678
+ },
679
+ {
680
+ "epoch": 1.215848948648262,
681
+ "grad_norm": 0.8228253318299735,
682
+ "learning_rate": 9.714488791960463e-06,
683
+ "loss": 1.3643,
684
+ "step": 4250
685
+ },
686
+ {
687
+ "epoch": 1.230153053926477,
688
+ "grad_norm": 0.6427955816989828,
689
+ "learning_rate": 9.707294800329536e-06,
690
+ "loss": 1.3608,
691
+ "step": 4300
692
+ },
693
+ {
694
+ "epoch": 1.2444571592046918,
695
+ "grad_norm": 0.6438118616712295,
696
+ "learning_rate": 9.700014344668152e-06,
697
+ "loss": 1.3564,
698
+ "step": 4350
699
+ },
700
+ {
701
+ "epoch": 1.2587612644829065,
702
+ "grad_norm": 0.5732058961632965,
703
+ "learning_rate": 9.692647574596803e-06,
704
+ "loss": 1.3623,
705
+ "step": 4400
706
+ },
707
+ {
708
+ "epoch": 1.2587612644829065,
709
+ "eval_loss": 1.3667371273040771,
710
+ "eval_runtime": 14.0711,
711
+ "eval_samples_per_second": 71.068,
712
+ "eval_steps_per_second": 2.274,
713
+ "step": 4400
714
+ },
715
+ {
716
+ "epoch": 1.2732084108139037,
717
+ "grad_norm": 0.5434874117890776,
718
+ "learning_rate": 9.685194641509837e-06,
719
+ "loss": 1.3592,
720
+ "step": 4450
721
+ },
722
+ {
723
+ "epoch": 1.2875125160921184,
724
+ "grad_norm": 0.8067573948854371,
725
+ "learning_rate": 9.677655698572326e-06,
726
+ "loss": 1.3571,
727
+ "step": 4500
728
+ },
729
+ {
730
+ "epoch": 1.3018166213703333,
731
+ "grad_norm": 0.6211280738341731,
732
+ "learning_rate": 9.670030900716941e-06,
733
+ "loss": 1.3577,
734
+ "step": 4550
735
+ },
736
+ {
737
+ "epoch": 1.3161207266485482,
738
+ "grad_norm": 0.47127980997402974,
739
+ "learning_rate": 9.662320404640743e-06,
740
+ "loss": 1.3497,
741
+ "step": 4600
742
+ },
743
+ {
744
+ "epoch": 1.3304248319267629,
745
+ "grad_norm": 0.6437090365289073,
746
+ "learning_rate": 9.654524368801982e-06,
747
+ "loss": 1.3611,
748
+ "step": 4650
749
+ },
750
+ {
751
+ "epoch": 1.3447289372049778,
752
+ "grad_norm": 0.4706214878937702,
753
+ "learning_rate": 9.646642953416835e-06,
754
+ "loss": 1.3596,
755
+ "step": 4700
756
+ },
757
+ {
758
+ "epoch": 1.3590330424831927,
759
+ "grad_norm": 0.4433218616654087,
760
+ "learning_rate": 9.638676320456109e-06,
761
+ "loss": 1.3612,
762
+ "step": 4750
763
+ },
764
+ {
765
+ "epoch": 1.3733371477614076,
766
+ "grad_norm": 0.6227834199361844,
767
+ "learning_rate": 9.630624633641918e-06,
768
+ "loss": 1.3487,
769
+ "step": 4800
770
+ },
771
+ {
772
+ "epoch": 1.3733371477614076,
773
+ "eval_loss": 1.3724805116653442,
774
+ "eval_runtime": 13.958,
775
+ "eval_samples_per_second": 71.643,
776
+ "eval_steps_per_second": 2.293,
777
+ "step": 4800
778
+ },
779
+ {
780
+ "epoch": 1.3876412530396225,
781
+ "grad_norm": 0.5615209752207829,
782
+ "learning_rate": 9.622488058444313e-06,
783
+ "loss": 1.3416,
784
+ "step": 4850
785
+ },
786
+ {
787
+ "epoch": 1.4019453583178372,
788
+ "grad_norm": 0.4593448830072353,
789
+ "learning_rate": 9.614266762077891e-06,
790
+ "loss": 1.3509,
791
+ "step": 4900
792
+ },
793
+ {
794
+ "epoch": 1.416249463596052,
795
+ "grad_norm": 0.5260361200473717,
796
+ "learning_rate": 9.605960913498342e-06,
797
+ "loss": 1.3504,
798
+ "step": 4950
799
+ },
800
+ {
801
+ "epoch": 1.430553568874267,
802
+ "grad_norm": 0.4949775762320425,
803
+ "learning_rate": 9.597570683398996e-06,
804
+ "loss": 1.3608,
805
+ "step": 5000
806
+ },
807
+ {
808
+ "epoch": 1.4448576741524817,
809
+ "grad_norm": 0.7134992551375888,
810
+ "learning_rate": 9.5890962442073e-06,
811
+ "loss": 1.3456,
812
+ "step": 5050
813
+ },
814
+ {
815
+ "epoch": 1.4591617794306966,
816
+ "grad_norm": 0.749997828555375,
817
+ "learning_rate": 9.580537770081285e-06,
818
+ "loss": 1.3413,
819
+ "step": 5100
820
+ },
821
+ {
822
+ "epoch": 1.4734658847089115,
823
+ "grad_norm": 0.5312330906616294,
824
+ "learning_rate": 9.57189543690598e-06,
825
+ "loss": 1.3507,
826
+ "step": 5150
827
+ },
828
+ {
829
+ "epoch": 1.4877699899871262,
830
+ "grad_norm": 0.5913338284525619,
831
+ "learning_rate": 9.563169422289798e-06,
832
+ "loss": 1.3386,
833
+ "step": 5200
834
+ },
835
+ {
836
+ "epoch": 1.4877699899871262,
837
+ "eval_loss": 1.359579086303711,
838
+ "eval_runtime": 14.046,
839
+ "eval_samples_per_second": 71.195,
840
+ "eval_steps_per_second": 2.278,
841
+ "step": 5200
842
+ },
843
+ {
844
+ "epoch": 1.5020740952653413,
845
+ "grad_norm": 0.63516444597305,
846
+ "learning_rate": 9.554359905560887e-06,
847
+ "loss": 1.3412,
848
+ "step": 5250
849
+ },
850
+ {
851
+ "epoch": 1.516378200543556,
852
+ "grad_norm": 0.4411581484928778,
853
+ "learning_rate": 9.54546706776345e-06,
854
+ "loss": 1.3505,
855
+ "step": 5300
856
+ },
857
+ {
858
+ "epoch": 1.530682305821771,
859
+ "grad_norm": 0.403266190389094,
860
+ "learning_rate": 9.536491091654018e-06,
861
+ "loss": 1.3418,
862
+ "step": 5350
863
+ },
864
+ {
865
+ "epoch": 1.5449864110999858,
866
+ "grad_norm": 0.4887790997121695,
867
+ "learning_rate": 9.527432161697696e-06,
868
+ "loss": 1.352,
869
+ "step": 5400
870
+ },
871
+ {
872
+ "epoch": 1.5592905163782005,
873
+ "grad_norm": 0.43803734390526294,
874
+ "learning_rate": 9.518290464064365e-06,
875
+ "loss": 1.3374,
876
+ "step": 5450
877
+ },
878
+ {
879
+ "epoch": 1.5735946216564154,
880
+ "grad_norm": 0.4477296911829739,
881
+ "learning_rate": 9.509066186624872e-06,
882
+ "loss": 1.3362,
883
+ "step": 5500
884
+ },
885
+ {
886
+ "epoch": 1.5878987269346303,
887
+ "grad_norm": 0.4849220779673394,
888
+ "learning_rate": 9.499759518947156e-06,
889
+ "loss": 1.3463,
890
+ "step": 5550
891
+ },
892
+ {
893
+ "epoch": 1.602202832212845,
894
+ "grad_norm": 0.43453154893881496,
895
+ "learning_rate": 9.490370652292357e-06,
896
+ "loss": 1.3342,
897
+ "step": 5600
898
+ },
899
+ {
900
+ "epoch": 1.602202832212845,
901
+ "eval_loss": 1.3611611127853394,
902
+ "eval_runtime": 13.9617,
903
+ "eval_samples_per_second": 71.625,
904
+ "eval_steps_per_second": 2.292,
905
+ "step": 5600
906
+ },
907
+ {
908
+ "epoch": 1.61650693749106,
909
+ "grad_norm": 0.4973975633500145,
910
+ "learning_rate": 9.480899779610883e-06,
911
+ "loss": 1.3557,
912
+ "step": 5650
913
+ },
914
+ {
915
+ "epoch": 1.6308110427692748,
916
+ "grad_norm": 0.8646218397904073,
917
+ "learning_rate": 9.471347095538448e-06,
918
+ "loss": 1.332,
919
+ "step": 5700
920
+ },
921
+ {
922
+ "epoch": 1.6451151480474895,
923
+ "grad_norm": 0.4766662524894494,
924
+ "learning_rate": 9.461712796392067e-06,
925
+ "loss": 1.3425,
926
+ "step": 5750
927
+ },
928
+ {
929
+ "epoch": 1.6594192533257046,
930
+ "grad_norm": 0.43492118267166,
931
+ "learning_rate": 9.45199708016603e-06,
932
+ "loss": 1.3366,
933
+ "step": 5800
934
+ },
935
+ {
936
+ "epoch": 1.6737233586039193,
937
+ "grad_norm": 0.7281191349195701,
938
+ "learning_rate": 9.442200146527824e-06,
939
+ "loss": 1.3405,
940
+ "step": 5850
941
+ },
942
+ {
943
+ "epoch": 1.6880274638821342,
944
+ "grad_norm": 0.5059870049803485,
945
+ "learning_rate": 9.432322196814032e-06,
946
+ "loss": 1.336,
947
+ "step": 5900
948
+ },
949
+ {
950
+ "epoch": 1.7023315691603491,
951
+ "grad_norm": 0.48815713123329457,
952
+ "learning_rate": 9.422363434026205e-06,
953
+ "loss": 1.3331,
954
+ "step": 5950
955
+ },
956
+ {
957
+ "epoch": 1.7166356744385638,
958
+ "grad_norm": 0.4825656212310282,
959
+ "learning_rate": 9.41232406282667e-06,
960
+ "loss": 1.3382,
961
+ "step": 6000
962
+ },
963
+ {
964
+ "epoch": 1.7166356744385638,
965
+ "eval_loss": 1.356214165687561,
966
+ "eval_runtime": 13.9939,
967
+ "eval_samples_per_second": 71.46,
968
+ "eval_steps_per_second": 2.287,
969
+ "step": 6000
970
+ },
971
+ {
972
+ "epoch": 1.7309397797167787,
973
+ "grad_norm": 0.7522246864779827,
974
+ "learning_rate": 9.402204289534344e-06,
975
+ "loss": 1.3239,
976
+ "step": 6050
977
+ },
978
+ {
979
+ "epoch": 1.7452438849949936,
980
+ "grad_norm": 0.48984350066891824,
981
+ "learning_rate": 9.392004322120484e-06,
982
+ "loss": 1.3237,
983
+ "step": 6100
984
+ },
985
+ {
986
+ "epoch": 1.7595479902732083,
987
+ "grad_norm": 0.544930574118496,
988
+ "learning_rate": 9.381724370204414e-06,
989
+ "loss": 1.3241,
990
+ "step": 6150
991
+ },
992
+ {
993
+ "epoch": 1.7738520955514234,
994
+ "grad_norm": 0.5482222598847393,
995
+ "learning_rate": 9.371364645049216e-06,
996
+ "loss": 1.3313,
997
+ "step": 6200
998
+ },
999
+ {
1000
+ "epoch": 1.788156200829638,
1001
+ "grad_norm": 0.46339705172698076,
1002
+ "learning_rate": 9.360925359557397e-06,
1003
+ "loss": 1.3256,
1004
+ "step": 6250
1005
+ },
1006
+ {
1007
+ "epoch": 1.8024603061078528,
1008
+ "grad_norm": 0.5277875338001611,
1009
+ "learning_rate": 9.3504067282665e-06,
1010
+ "loss": 1.3503,
1011
+ "step": 6300
1012
+ },
1013
+ {
1014
+ "epoch": 1.816764411386068,
1015
+ "grad_norm": 0.5539059109504075,
1016
+ "learning_rate": 9.339808967344701e-06,
1017
+ "loss": 1.3368,
1018
+ "step": 6350
1019
+ },
1020
+ {
1021
+ "epoch": 1.8310685166642826,
1022
+ "grad_norm": 0.5119187022621997,
1023
+ "learning_rate": 9.329132294586374e-06,
1024
+ "loss": 1.3257,
1025
+ "step": 6400
1026
+ },
1027
+ {
1028
+ "epoch": 1.8310685166642826,
1029
+ "eval_loss": 1.348954200744629,
1030
+ "eval_runtime": 14.1165,
1031
+ "eval_samples_per_second": 70.839,
1032
+ "eval_steps_per_second": 2.267,
1033
+ "step": 6400
1034
+ },
1035
+ {
1036
+ "epoch": 1.8453726219424975,
1037
+ "grad_norm": 0.4572643729622861,
1038
+ "learning_rate": 9.318376929407606e-06,
1039
+ "loss": 1.3296,
1040
+ "step": 6450
1041
+ },
1042
+ {
1043
+ "epoch": 1.8596767272207124,
1044
+ "grad_norm": 0.41441721606603,
1045
+ "learning_rate": 9.307543092841688e-06,
1046
+ "loss": 1.3306,
1047
+ "step": 6500
1048
+ },
1049
+ {
1050
+ "epoch": 1.873980832498927,
1051
+ "grad_norm": 0.4437842388580668,
1052
+ "learning_rate": 9.296631007534576e-06,
1053
+ "loss": 1.3219,
1054
+ "step": 6550
1055
+ },
1056
+ {
1057
+ "epoch": 1.888284937777142,
1058
+ "grad_norm": 0.668469538481535,
1059
+ "learning_rate": 9.285640897740316e-06,
1060
+ "loss": 1.3201,
1061
+ "step": 6600
1062
+ },
1063
+ {
1064
+ "epoch": 1.902589043055357,
1065
+ "grad_norm": 0.4476992280694945,
1066
+ "learning_rate": 9.27457298931643e-06,
1067
+ "loss": 1.3279,
1068
+ "step": 6650
1069
+ },
1070
+ {
1071
+ "epoch": 1.9168931483335716,
1072
+ "grad_norm": 0.8609307931818154,
1073
+ "learning_rate": 9.263427509719287e-06,
1074
+ "loss": 1.3248,
1075
+ "step": 6700
1076
+ },
1077
+ {
1078
+ "epoch": 1.9311972536117867,
1079
+ "grad_norm": 0.48764755574202223,
1080
+ "learning_rate": 9.252204687999401e-06,
1081
+ "loss": 1.3293,
1082
+ "step": 6750
1083
+ },
1084
+ {
1085
+ "epoch": 1.9455013588900014,
1086
+ "grad_norm": 0.7588730534632143,
1087
+ "learning_rate": 9.240904754796767e-06,
1088
+ "loss": 1.3338,
1089
+ "step": 6800
1090
+ },
1091
+ {
1092
+ "epoch": 1.9455013588900014,
1093
+ "eval_loss": 1.3457790613174438,
1094
+ "eval_runtime": 14.0391,
1095
+ "eval_samples_per_second": 71.229,
1096
+ "eval_steps_per_second": 2.279,
1097
+ "step": 6800
1098
+ },
1099
+ {
1100
+ "epoch": 1.9598054641682163,
1101
+ "grad_norm": 0.47728013357161364,
1102
+ "learning_rate": 9.22952794233608e-06,
1103
+ "loss": 1.328,
1104
+ "step": 6850
1105
+ },
1106
+ {
1107
+ "epoch": 1.9741095694464312,
1108
+ "grad_norm": 0.4865065014657903,
1109
+ "learning_rate": 9.218074484421977e-06,
1110
+ "loss": 1.3329,
1111
+ "step": 6900
1112
+ },
1113
+ {
1114
+ "epoch": 1.988413674724646,
1115
+ "grad_norm": 0.46233352981690246,
1116
+ "learning_rate": 9.206544616434249e-06,
1117
+ "loss": 1.3193,
1118
+ "step": 6950
1119
+ },
1120
+ {
1121
+ "epoch": 2.0027177800028606,
1122
+ "grad_norm": 0.4748345037256569,
1123
+ "learning_rate": 9.194938575322973e-06,
1124
+ "loss": 1.3137,
1125
+ "step": 7000
1126
+ },
1127
+ {
1128
+ "epoch": 2.0170218852810757,
1129
+ "grad_norm": 0.3961349395717629,
1130
+ "learning_rate": 9.183256599603672e-06,
1131
+ "loss": 1.2981,
1132
+ "step": 7050
1133
+ },
1134
+ {
1135
+ "epoch": 2.0313259905592904,
1136
+ "grad_norm": 0.6284979836068443,
1137
+ "learning_rate": 9.171498929352388e-06,
1138
+ "loss": 1.2961,
1139
+ "step": 7100
1140
+ },
1141
+ {
1142
+ "epoch": 2.0456300958375055,
1143
+ "grad_norm": 0.6558610249594138,
1144
+ "learning_rate": 9.159665806200766e-06,
1145
+ "loss": 1.2913,
1146
+ "step": 7150
1147
+ },
1148
+ {
1149
+ "epoch": 2.0599342011157202,
1150
+ "grad_norm": 0.45514976033924853,
1151
+ "learning_rate": 9.147757473331082e-06,
1152
+ "loss": 1.2906,
1153
+ "step": 7200
1154
+ },
1155
+ {
1156
+ "epoch": 2.0599342011157202,
1157
+ "eval_loss": 1.3430439233779907,
1158
+ "eval_runtime": 14.0262,
1159
+ "eval_samples_per_second": 71.295,
1160
+ "eval_steps_per_second": 2.281,
1161
+ "step": 7200
1162
+ },
1163
+ {
1164
+ "epoch": 2.074238306393935,
1165
+ "grad_norm": 0.5426461545993814,
1166
+ "learning_rate": 9.135774175471244e-06,
1167
+ "loss": 1.3004,
1168
+ "step": 7250
1169
+ },
1170
+ {
1171
+ "epoch": 2.08854241167215,
1172
+ "grad_norm": 0.6005516516830625,
1173
+ "learning_rate": 9.123716158889765e-06,
1174
+ "loss": 1.292,
1175
+ "step": 7300
1176
+ },
1177
+ {
1178
+ "epoch": 2.1028465169503647,
1179
+ "grad_norm": 0.9639752009743953,
1180
+ "learning_rate": 9.111583671390697e-06,
1181
+ "loss": 1.2862,
1182
+ "step": 7350
1183
+ },
1184
+ {
1185
+ "epoch": 2.1171506222285794,
1186
+ "grad_norm": 0.4488649957289315,
1187
+ "learning_rate": 9.09937696230855e-06,
1188
+ "loss": 1.3036,
1189
+ "step": 7400
1190
+ },
1191
+ {
1192
+ "epoch": 2.1314547275067945,
1193
+ "grad_norm": 0.7721978784000721,
1194
+ "learning_rate": 9.087096282503152e-06,
1195
+ "loss": 1.2901,
1196
+ "step": 7450
1197
+ },
1198
+ {
1199
+ "epoch": 2.1457588327850092,
1200
+ "grad_norm": 0.4782857255612778,
1201
+ "learning_rate": 9.074741884354507e-06,
1202
+ "loss": 1.2946,
1203
+ "step": 7500
1204
+ },
1205
+ {
1206
+ "epoch": 2.1600629380632244,
1207
+ "grad_norm": 0.43220427000612477,
1208
+ "learning_rate": 9.062314021757603e-06,
1209
+ "loss": 1.2921,
1210
+ "step": 7550
1211
+ },
1212
+ {
1213
+ "epoch": 2.174367043341439,
1214
+ "grad_norm": 0.5795623059587878,
1215
+ "learning_rate": 9.049812950117191e-06,
1216
+ "loss": 1.279,
1217
+ "step": 7600
1218
+ },
1219
+ {
1220
+ "epoch": 2.174367043341439,
1221
+ "eval_loss": 1.3394057750701904,
1222
+ "eval_runtime": 14.0446,
1223
+ "eval_samples_per_second": 71.202,
1224
+ "eval_steps_per_second": 2.278,
1225
+ "step": 7600
1226
+ },
1227
+ {
1228
+ "epoch": 2.1886711486196537,
1229
+ "grad_norm": 0.5713295331254999,
1230
+ "learning_rate": 9.037238926342544e-06,
1231
+ "loss": 1.2909,
1232
+ "step": 7650
1233
+ },
1234
+ {
1235
+ "epoch": 2.202975253897869,
1236
+ "grad_norm": 0.45758770778160607,
1237
+ "learning_rate": 9.02459220884217e-06,
1238
+ "loss": 1.3009,
1239
+ "step": 7700
1240
+ },
1241
+ {
1242
+ "epoch": 2.2172793591760835,
1243
+ "grad_norm": 0.4138476142224768,
1244
+ "learning_rate": 9.011873057518503e-06,
1245
+ "loss": 1.2901,
1246
+ "step": 7750
1247
+ },
1248
+ {
1249
+ "epoch": 2.2315834644542982,
1250
+ "grad_norm": 0.5401623167342202,
1251
+ "learning_rate": 8.999081733762568e-06,
1252
+ "loss": 1.2883,
1253
+ "step": 7800
1254
+ },
1255
+ {
1256
+ "epoch": 2.2458875697325134,
1257
+ "grad_norm": 0.4225832679092138,
1258
+ "learning_rate": 8.986218500448598e-06,
1259
+ "loss": 1.2986,
1260
+ "step": 7850
1261
+ },
1262
+ {
1263
+ "epoch": 2.260191675010728,
1264
+ "grad_norm": 0.578769239923742,
1265
+ "learning_rate": 8.973283621928644e-06,
1266
+ "loss": 1.2932,
1267
+ "step": 7900
1268
+ },
1269
+ {
1270
+ "epoch": 2.2744957802889427,
1271
+ "grad_norm": 0.42471537710995716,
1272
+ "learning_rate": 8.96027736402713e-06,
1273
+ "loss": 1.2911,
1274
+ "step": 7950
1275
+ },
1276
+ {
1277
+ "epoch": 2.288799885567158,
1278
+ "grad_norm": 0.45640421971129197,
1279
+ "learning_rate": 8.947199994035402e-06,
1280
+ "loss": 1.2795,
1281
+ "step": 8000
1282
+ },
1283
+ {
1284
+ "epoch": 2.288799885567158,
1285
+ "eval_loss": 1.3331786394119263,
1286
+ "eval_runtime": 13.9979,
1287
+ "eval_samples_per_second": 71.439,
1288
+ "eval_steps_per_second": 2.286,
1289
+ "step": 8000
1290
+ },
1291
+ {
1292
+ "epoch": 2.3031039908453725,
1293
+ "grad_norm": 0.5262528524865082,
1294
+ "learning_rate": 8.934051780706226e-06,
1295
+ "loss": 1.2847,
1296
+ "step": 8050
1297
+ },
1298
+ {
1299
+ "epoch": 2.3174080961235877,
1300
+ "grad_norm": 0.4308615143171633,
1301
+ "learning_rate": 8.920832994248268e-06,
1302
+ "loss": 1.2942,
1303
+ "step": 8100
1304
+ },
1305
+ {
1306
+ "epoch": 2.3317122014018024,
1307
+ "grad_norm": 0.46124798716185816,
1308
+ "learning_rate": 8.907543906320542e-06,
1309
+ "loss": 1.297,
1310
+ "step": 8150
1311
+ },
1312
+ {
1313
+ "epoch": 2.346016306680017,
1314
+ "grad_norm": 0.4538526984132291,
1315
+ "learning_rate": 8.894184790026823e-06,
1316
+ "loss": 1.2832,
1317
+ "step": 8200
1318
+ },
1319
+ {
1320
+ "epoch": 2.360320411958232,
1321
+ "grad_norm": 0.4645888620271419,
1322
+ "learning_rate": 8.880755919910048e-06,
1323
+ "loss": 1.2891,
1324
+ "step": 8250
1325
+ },
1326
+ {
1327
+ "epoch": 2.374624517236447,
1328
+ "grad_norm": 0.5676282155239492,
1329
+ "learning_rate": 8.867257571946646e-06,
1330
+ "loss": 1.295,
1331
+ "step": 8300
1332
+ },
1333
+ {
1334
+ "epoch": 2.3889286225146615,
1335
+ "grad_norm": 0.429927163826217,
1336
+ "learning_rate": 8.853690023540898e-06,
1337
+ "loss": 1.2917,
1338
+ "step": 8350
1339
+ },
1340
+ {
1341
+ "epoch": 2.4032327277928767,
1342
+ "grad_norm": 0.4224712416764881,
1343
+ "learning_rate": 8.840053553519216e-06,
1344
+ "loss": 1.2793,
1345
+ "step": 8400
1346
+ },
1347
+ {
1348
+ "epoch": 2.4032327277928767,
1349
+ "eval_loss": 1.3279030323028564,
1350
+ "eval_runtime": 14.0803,
1351
+ "eval_samples_per_second": 71.021,
1352
+ "eval_steps_per_second": 2.273,
1353
+ "step": 8400
1354
+ },
1355
+ {
1356
+ "epoch": 2.4175368330710914,
1357
+ "grad_norm": 0.3947030765297477,
1358
+ "learning_rate": 8.82634844212442e-06,
1359
+ "loss": 1.288,
1360
+ "step": 8450
1361
+ },
1362
+ {
1363
+ "epoch": 2.431840938349306,
1364
+ "grad_norm": 0.4497937878369028,
1365
+ "learning_rate": 8.81257497100998e-06,
1366
+ "loss": 1.2949,
1367
+ "step": 8500
1368
+ },
1369
+ {
1370
+ "epoch": 2.446145043627521,
1371
+ "grad_norm": 0.4948619624780139,
1372
+ "learning_rate": 8.79873342323422e-06,
1373
+ "loss": 1.2879,
1374
+ "step": 8550
1375
+ },
1376
+ {
1377
+ "epoch": 2.460449148905736,
1378
+ "grad_norm": 0.8841779211631144,
1379
+ "learning_rate": 8.78482408325451e-06,
1380
+ "loss": 1.2842,
1381
+ "step": 8600
1382
+ },
1383
+ {
1384
+ "epoch": 2.474753254183951,
1385
+ "grad_norm": 0.44783586114307045,
1386
+ "learning_rate": 8.770847236921412e-06,
1387
+ "loss": 1.2868,
1388
+ "step": 8650
1389
+ },
1390
+ {
1391
+ "epoch": 2.4890573594621657,
1392
+ "grad_norm": 0.6387382536339177,
1393
+ "learning_rate": 8.756803171472817e-06,
1394
+ "loss": 1.2821,
1395
+ "step": 8700
1396
+ },
1397
+ {
1398
+ "epoch": 2.5033614647403803,
1399
+ "grad_norm": 0.4704200568795867,
1400
+ "learning_rate": 8.742692175528027e-06,
1401
+ "loss": 1.2854,
1402
+ "step": 8750
1403
+ },
1404
+ {
1405
+ "epoch": 2.5176655700185955,
1406
+ "grad_norm": 0.4776364379876357,
1407
+ "learning_rate": 8.728514539081837e-06,
1408
+ "loss": 1.2814,
1409
+ "step": 8800
1410
+ },
1411
+ {
1412
+ "epoch": 2.5176655700185955,
1413
+ "eval_loss": 1.3429194688796997,
1414
+ "eval_runtime": 13.9117,
1415
+ "eval_samples_per_second": 71.882,
1416
+ "eval_steps_per_second": 2.3,
1417
+ "step": 8800
1418
+ },
1419
+ {
1420
+ "epoch": 2.53196967529681,
1421
+ "grad_norm": 0.7082070517295844,
1422
+ "learning_rate": 8.714270553498567e-06,
1423
+ "loss": 1.2851,
1424
+ "step": 8850
1425
+ },
1426
+ {
1427
+ "epoch": 2.5462737805750253,
1428
+ "grad_norm": 0.4514295526886292,
1429
+ "learning_rate": 8.699960511506077e-06,
1430
+ "loss": 1.2809,
1431
+ "step": 8900
1432
+ },
1433
+ {
1434
+ "epoch": 2.56057788585324,
1435
+ "grad_norm": 0.6853925555348788,
1436
+ "learning_rate": 8.685584707189749e-06,
1437
+ "loss": 1.2961,
1438
+ "step": 8950
1439
+ },
1440
+ {
1441
+ "epoch": 2.5748819911314547,
1442
+ "grad_norm": 0.4538248869842651,
1443
+ "learning_rate": 8.671143435986447e-06,
1444
+ "loss": 1.2893,
1445
+ "step": 9000
1446
+ },
1447
+ {
1448
+ "epoch": 2.5891860964096693,
1449
+ "grad_norm": 0.45631276178983216,
1450
+ "learning_rate": 8.656636994678447e-06,
1451
+ "loss": 1.2921,
1452
+ "step": 9050
1453
+ },
1454
+ {
1455
+ "epoch": 2.6034902016878845,
1456
+ "grad_norm": 0.4181402292311998,
1457
+ "learning_rate": 8.642065681387329e-06,
1458
+ "loss": 1.2849,
1459
+ "step": 9100
1460
+ },
1461
+ {
1462
+ "epoch": 2.617794306966099,
1463
+ "grad_norm": 0.4679963507707488,
1464
+ "learning_rate": 8.627429795567858e-06,
1465
+ "loss": 1.2789,
1466
+ "step": 9150
1467
+ },
1468
+ {
1469
+ "epoch": 2.6320984122443143,
1470
+ "grad_norm": 0.4065327115468989,
1471
+ "learning_rate": 8.61272963800183e-06,
1472
+ "loss": 1.2805,
1473
+ "step": 9200
1474
+ },
1475
+ {
1476
+ "epoch": 2.6320984122443143,
1477
+ "eval_loss": 1.3250114917755127,
1478
+ "eval_runtime": 14.1045,
1479
+ "eval_samples_per_second": 70.899,
1480
+ "eval_steps_per_second": 2.269,
1481
+ "step": 9200
1482
+ },
1483
+ {
1484
+ "epoch": 2.646402517522529,
1485
+ "grad_norm": 0.442868220510357,
1486
+ "learning_rate": 8.597965510791883e-06,
1487
+ "loss": 1.2878,
1488
+ "step": 9250
1489
+ },
1490
+ {
1491
+ "epoch": 2.6607066228007437,
1492
+ "grad_norm": 0.4167482981358102,
1493
+ "learning_rate": 8.5831377173553e-06,
1494
+ "loss": 1.2812,
1495
+ "step": 9300
1496
+ },
1497
+ {
1498
+ "epoch": 2.675010728078959,
1499
+ "grad_norm": 0.4090769340560565,
1500
+ "learning_rate": 8.568246562417762e-06,
1501
+ "loss": 1.2933,
1502
+ "step": 9350
1503
+ },
1504
+ {
1505
+ "epoch": 2.6893148333571735,
1506
+ "grad_norm": 0.42518490969522255,
1507
+ "learning_rate": 8.553292352007096e-06,
1508
+ "loss": 1.2864,
1509
+ "step": 9400
1510
+ },
1511
+ {
1512
+ "epoch": 2.7036189386353886,
1513
+ "grad_norm": 0.4463014716471431,
1514
+ "learning_rate": 8.538275393446976e-06,
1515
+ "loss": 1.2857,
1516
+ "step": 9450
1517
+ },
1518
+ {
1519
+ "epoch": 2.7179230439136033,
1520
+ "grad_norm": 0.45596948523932324,
1521
+ "learning_rate": 8.523195995350613e-06,
1522
+ "loss": 1.2835,
1523
+ "step": 9500
1524
+ },
1525
+ {
1526
+ "epoch": 2.732227149191818,
1527
+ "grad_norm": 0.4205155827535561,
1528
+ "learning_rate": 8.508054467614417e-06,
1529
+ "loss": 1.2849,
1530
+ "step": 9550
1531
+ },
1532
+ {
1533
+ "epoch": 2.7465312544700327,
1534
+ "grad_norm": 0.48430008888282355,
1535
+ "learning_rate": 8.492851121411614e-06,
1536
+ "loss": 1.2789,
1537
+ "step": 9600
1538
+ },
1539
+ {
1540
+ "epoch": 2.7465312544700327,
1541
+ "eval_loss": 1.3283616304397583,
1542
+ "eval_runtime": 14.0066,
1543
+ "eval_samples_per_second": 71.395,
1544
+ "eval_steps_per_second": 2.285,
1545
+ "step": 9600
1546
+ },
1547
+ {
1548
+ "epoch": 2.760835359748248,
1549
+ "grad_norm": 0.5759994995680412,
1550
+ "learning_rate": 8.477586269185868e-06,
1551
+ "loss": 1.2807,
1552
+ "step": 9650
1553
+ },
1554
+ {
1555
+ "epoch": 2.7751394650264625,
1556
+ "grad_norm": 0.4062177321040095,
1557
+ "learning_rate": 8.462260224644848e-06,
1558
+ "loss": 1.2786,
1559
+ "step": 9700
1560
+ },
1561
+ {
1562
+ "epoch": 2.7894435703046776,
1563
+ "grad_norm": 0.40744982615324904,
1564
+ "learning_rate": 8.446873302753783e-06,
1565
+ "loss": 1.288,
1566
+ "step": 9750
1567
+ },
1568
+ {
1569
+ "epoch": 2.8037476755828923,
1570
+ "grad_norm": 0.4351554021842912,
1571
+ "learning_rate": 8.431425819728998e-06,
1572
+ "loss": 1.2809,
1573
+ "step": 9800
1574
+ },
1575
+ {
1576
+ "epoch": 2.818051780861107,
1577
+ "grad_norm": 0.4565206220601423,
1578
+ "learning_rate": 8.415918093031403e-06,
1579
+ "loss": 1.2761,
1580
+ "step": 9850
1581
+ },
1582
+ {
1583
+ "epoch": 2.832355886139322,
1584
+ "grad_norm": 0.4286148896345825,
1585
+ "learning_rate": 8.400350441359976e-06,
1586
+ "loss": 1.2738,
1587
+ "step": 9900
1588
+ },
1589
+ {
1590
+ "epoch": 2.846659991417537,
1591
+ "grad_norm": 0.4091019318117471,
1592
+ "learning_rate": 8.384723184645211e-06,
1593
+ "loss": 1.2756,
1594
+ "step": 9950
1595
+ },
1596
+ {
1597
+ "epoch": 2.860964096695752,
1598
+ "grad_norm": 0.5366072380832926,
1599
+ "learning_rate": 8.369036644042546e-06,
1600
+ "loss": 1.264,
1601
+ "step": 10000
1602
+ },
1603
+ {
1604
+ "epoch": 2.860964096695752,
1605
+ "eval_loss": 1.319417953491211,
1606
+ "eval_runtime": 14.0197,
1607
+ "eval_samples_per_second": 71.328,
1608
+ "eval_steps_per_second": 2.283,
1609
+ "step": 10000
1610
+ },
1611
+ {
1612
+ "epoch": 2.8752682019739666,
1613
+ "grad_norm": 0.39891877892139094,
1614
+ "learning_rate": 8.353291141925763e-06,
1615
+ "loss": 1.2714,
1616
+ "step": 10050
1617
+ },
1618
+ {
1619
+ "epoch": 2.8895723072521813,
1620
+ "grad_norm": 0.43116855479870975,
1621
+ "learning_rate": 8.337487001880353e-06,
1622
+ "loss": 1.276,
1623
+ "step": 10100
1624
+ },
1625
+ {
1626
+ "epoch": 2.903876412530396,
1627
+ "grad_norm": 0.43311934645181527,
1628
+ "learning_rate": 8.32162454869688e-06,
1629
+ "loss": 1.2733,
1630
+ "step": 10150
1631
+ },
1632
+ {
1633
+ "epoch": 2.918180517808611,
1634
+ "grad_norm": 0.4236540903742665,
1635
+ "learning_rate": 8.305704108364301e-06,
1636
+ "loss": 1.2758,
1637
+ "step": 10200
1638
+ },
1639
+ {
1640
+ "epoch": 2.932484623086826,
1641
+ "grad_norm": 0.4815023613318688,
1642
+ "learning_rate": 8.289726008063265e-06,
1643
+ "loss": 1.275,
1644
+ "step": 10250
1645
+ },
1646
+ {
1647
+ "epoch": 2.946788728365041,
1648
+ "grad_norm": 0.43681054268020525,
1649
+ "learning_rate": 8.273690576159383e-06,
1650
+ "loss": 1.2789,
1651
+ "step": 10300
1652
+ },
1653
+ {
1654
+ "epoch": 2.9610928336432556,
1655
+ "grad_norm": 0.4370480894359291,
1656
+ "learning_rate": 8.257598142196496e-06,
1657
+ "loss": 1.267,
1658
+ "step": 10350
1659
+ },
1660
+ {
1661
+ "epoch": 2.9753969389214703,
1662
+ "grad_norm": 0.4461842695375769,
1663
+ "learning_rate": 8.241449036889892e-06,
1664
+ "loss": 1.2734,
1665
+ "step": 10400
1666
+ },
1667
+ {
1668
+ "epoch": 2.9753969389214703,
1669
+ "eval_loss": 1.3316634893417358,
1670
+ "eval_runtime": 13.9113,
1671
+ "eval_samples_per_second": 71.884,
1672
+ "eval_steps_per_second": 2.3,
1673
+ "step": 10400
1674
+ },
1675
+ {
1676
+ "epoch": 2.9897010441996854,
1677
+ "grad_norm": 0.44034804073477984,
1678
+ "learning_rate": 8.225243592119501e-06,
1679
+ "loss": 1.2736,
1680
+ "step": 10450
1681
+ },
1682
+ {
1683
+ "epoch": 3.0040051494779,
1684
+ "grad_norm": 0.4720256474307512,
1685
+ "learning_rate": 8.208982140923095e-06,
1686
+ "loss": 1.2694,
1687
+ "step": 10500
1688
+ },
1689
+ {
1690
+ "epoch": 3.0183092547561152,
1691
+ "grad_norm": 0.6347562232882346,
1692
+ "learning_rate": 8.192665017489431e-06,
1693
+ "loss": 1.2336,
1694
+ "step": 10550
1695
+ },
1696
+ {
1697
+ "epoch": 3.03261336003433,
1698
+ "grad_norm": 0.37981139577002,
1699
+ "learning_rate": 8.17629255715138e-06,
1700
+ "loss": 1.2494,
1701
+ "step": 10600
1702
+ },
1703
+ {
1704
+ "epoch": 3.0469174653125446,
1705
+ "grad_norm": 0.7105885207992017,
1706
+ "learning_rate": 8.159865096379046e-06,
1707
+ "loss": 1.2397,
1708
+ "step": 10650
1709
+ },
1710
+ {
1711
+ "epoch": 3.0612215705907597,
1712
+ "grad_norm": 0.43006752774126733,
1713
+ "learning_rate": 8.14338297277284e-06,
1714
+ "loss": 1.2384,
1715
+ "step": 10700
1716
+ },
1717
+ {
1718
+ "epoch": 3.0755256758689744,
1719
+ "grad_norm": 0.4261194480956777,
1720
+ "learning_rate": 8.126846525056555e-06,
1721
+ "loss": 1.2436,
1722
+ "step": 10750
1723
+ },
1724
+ {
1725
+ "epoch": 3.089829781147189,
1726
+ "grad_norm": 0.45249834468920586,
1727
+ "learning_rate": 8.110256093070393e-06,
1728
+ "loss": 1.252,
1729
+ "step": 10800
1730
+ },
1731
+ {
1732
+ "epoch": 3.089829781147189,
1733
+ "eval_loss": 1.324701189994812,
1734
+ "eval_runtime": 14.0291,
1735
+ "eval_samples_per_second": 71.28,
1736
+ "eval_steps_per_second": 2.281,
1737
+ "step": 10800
1738
+ }
1739
+ ],
1740
+ "logging_steps": 50,
1741
+ "max_steps": 34950,
1742
+ "num_input_tokens_seen": 0,
1743
+ "num_train_epochs": 10,
1744
+ "save_steps": 400,
1745
+ "stateful_callbacks": {
1746
+ "TrainerControl": {
1747
+ "args": {
1748
+ "should_epoch_stop": false,
1749
+ "should_evaluate": false,
1750
+ "should_log": false,
1751
+ "should_save": true,
1752
+ "should_training_stop": false
1753
+ },
1754
+ "attributes": {}
1755
+ }
1756
+ },
1757
+ "total_flos": 1.0328768862224384e+16,
1758
+ "train_batch_size": 4,
1759
+ "trial_name": null,
1760
+ "trial_params": null
1761
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d70f6b7223186f679f09a0f4404fc3f434bfeac6c1e1629dfecf969286e228b1
3
+ size 7224
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)