Upload my first PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2_IngoTB303_v0_1.zip +3 -0
- ppo-LunarLander-v2_IngoTB303_v0_1/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2_IngoTB303_v0_1/data +94 -0
- ppo-LunarLander-v2_IngoTB303_v0_1/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2_IngoTB303_v0_1/policy.pth +3 -0
- ppo-LunarLander-v2_IngoTB303_v0_1/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2_IngoTB303_v0_1/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 255.51 +/- 21.94
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f561a881a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f561a881af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f561a881b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f561a881c10>", "_build": "<function ActorCriticPolicy._build at 0x7f561a881ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f561a881d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f561a881dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f561a881e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f561a881ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f561a881f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f561a884040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f561a87e4e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671449325760939300, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEr3uD5Nhxw/vefcvaHG0L5M3Ow98TqzvQAAAAAAAAAARiQKPocykj8eQps+wR7lvkHqEj74QUA9AAAAAAAAAABG4Bi+x4SzPkJeUT5yJ12+V0QfvHuscT0AAAAAAAAAAIb6Az7xsUY+TsMevqVu4b0AXmY8joNSvQAAAAAAAAAAihCNPtBk6z4MDQa+jaSHvpi7oT1eIzA9AAAAAAAAAAAABvU8n5rKu9Z6lLxXK5A8ICc5vRV3cz0AAIA/AACAPwAOqj323H266rZKONPAJDMaloU5IKBrtwAAgD8AAAAARhZNPvDR8D6eEIW+Dc/EvnlyjLw+dQq+AAAAAAAAAADzj/Y9gqyJP7a3aT4dhMa+mOglPgfwxDsAAAAAAAAAALPuYj6oULU+mreDvlNUkr662ei8J6oLvgAAAAAAAAAAGsa/PTggjrtNMfS84LD6O9DwvTziH+G8AACAPwAAgD8AU0c+1K6nP0Yl4j7ekcC+rYqoPmaCfT4AAAAAAAAAADP/ljwfRNS7DnxyuifFrjxak1I96XuRvQAAgD8AAIA/zf5jPdrDqj4hcx09Ja12vvpbfD3HUB88AAAAAAAAAADa7ZS9j7p2uiYuTDv8vo417nIdOwa5a7oAAIA/AAAAAGZSgTw2BTA9h2WiPeHJyL3txHg9MvSyvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIH6LRHQQHcECUhpRSlIwBbJRNQgGMAXSUR0Ccv9okAxSHdX2UKGgGaAloD0MIdt8xPLaicECUhpRSlGgVTTEBaBZHQJzAHr3TNMZ1fZQoaAZoCWgPQwha1Ce5g59wQJSGlFKUaBVNpQNoFkdAnMDP5Lytm3V9lChoBmgJaA9DCPDfvDgxmnBAlIaUUpRoFU01AWgWR0CcweE87p3YdX2UKGgGaAloD0MInPpA8k58bkCUhpRSlGgVTf8BaBZHQJzB/XarWAh1fZQoaAZoCWgPQwiRtvEn6k9xQJSGlFKUaBVNMwFoFkdAnMK8guAZsXV9lChoBmgJaA9DCC1cVmEzVnJAlIaUUpRoFU1ZAWgWR0Cc2BqfOD8MdX2UKGgGaAloD0MI9z3qr5dPckCUhpRSlGgVTR4BaBZHQJzZx06o2n91fZQoaAZoCWgPQwh/UBcplEtsQJSGlFKUaBVNvAFoFkdAnNpAHmig03V9lChoBmgJaA9DCPpH36TpenFAlIaUUpRoFU0LAWgWR0Cc2osjVx0ddX2UKGgGaAloD0MIou2YuitBcECUhpRSlGgVTQ4BaBZHQJzbLJA+pwV1fZQoaAZoCWgPQwgbLQd6qPpuQJSGlFKUaBVNWwFoFkdAnNtcRYigTXV9lChoBmgJaA9DCB7gSQsXzm1AlIaUUpRoFU0lAWgWR0Cc247SApazdX2UKGgGaAloD0MIqRJlbyk0b0CUhpRSlGgVTRABaBZHQJzbzKRuCPJ1fZQoaAZoCWgPQwiaWyGsRoNxQJSGlFKUaBVNKgFoFkdAnNwaDK5kLHV9lChoBmgJaA9DCJT5R99kk3BAlIaUUpRoFU0dAWgWR0Cc3HVARkEtdX2UKGgGaAloD0MIdJZZhKJGckCUhpRSlGgVTW4BaBZHQJzcdi9Zid91fZQoaAZoCWgPQwgucHmsmZJuQJSGlFKUaBVNLgFoFkdAnN2KYE4ecXV9lChoBmgJaA9DCAwEATI0VXFAlIaUUpRoFU0NAWgWR0Cc3dE9t/FzdX2UKGgGaAloD0MIL+Blho0Ec0CUhpRSlGgVTU0BaBZHQJzfbgVGkN51fZQoaAZoCWgPQwirBfaYyHNvQJSGlFKUaBVNQQFoFkdAnOAHAdn003V9lChoBmgJaA9DCJtZSwFpS1FAlIaUUpRoFUvYaBZHQJzg09lmOEN1fZQoaAZoCWgPQwgwuycPC3NxQJSGlFKUaBVNLAJoFkdAnOJtMoMKC3V9lChoBmgJaA9DCAMJih9jOm9AlIaUUpRoFU0dAWgWR0Cc4oAhStNjdX2UKGgGaAloD0MIpb3BF2YFcECUhpRSlGgVTRIBaBZHQJzjbwBo24x1fZQoaAZoCWgPQwhP6PUncf1sQJSGlFKUaBVNOgFoFkdAnOPwTVUdaXV9lChoBmgJaA9DCJkMx/OZSHBAlIaUUpRoFU06AWgWR0Cc5PMxXXAedX2UKGgGaAloD0MIHauUnqmUcUCUhpRSlGgVTTYBaBZHQJzlAjLSuyN1fZQoaAZoCWgPQwiZnxua8ghwQJSGlFKUaBVNQwFoFkdAnOZbfk3juXV9lChoBmgJaA9DCF4vTRHgNm9AlIaUUpRoFU0RAWgWR0Cc5m3BpHqedX2UKGgGaAloD0MITySYamZFcUCUhpRSlGgVTVQBaBZHQJzmfJvHcUN1fZQoaAZoCWgPQwjk1w+xActyQJSGlFKUaBVNIgFoFkdAnOaeXZ5AyHV9lChoBmgJaA9DCMug2uBEbHJAlIaUUpRoFU1sAWgWR0Cc54NI9TxYdX2UKGgGaAloD0MIkzmWd5VfckCUhpRSlGgVTV4BaBZHQJzqtyeZof11fZQoaAZoCWgPQwh3u16aohdvQJSGlFKUaBVNUQFoFkdAnOr3iBGx2XV9lChoBmgJaA9DCJpAEYtYanBAlIaUUpRoFU0dAWgWR0Cc68cBltj1dX2UKGgGaAloD0MIBARz9DiqcECUhpRSlGgVTVoBaBZHQJzsM7DEWIp1fZQoaAZoCWgPQwhMcOoDCX1wQJSGlFKUaBVNQgFoFkdAnO0KeXiR4nV9lChoBmgJaA9DCMWrrG2KknFAlIaUUpRoFU0gAWgWR0Cc7V+fh/AkdX2UKGgGaAloD0MInZyhuKNZcECUhpRSlGgVTTsBaBZHQJztz56+nIh1fZQoaAZoCWgPQwgZ/tMNlLlwQJSGlFKUaBVNEgFoFkdAnO4E9ECvHXV9lChoBmgJaA9DCHIXYYpyim1AlIaUUpRoFU0FAWgWR0Cc7vYL9deIdX2UKGgGaAloD0MIlDKpoQ3bcUCUhpRSlGgVTTkBaBZHQJzvLuy/sVt1fZQoaAZoCWgPQwj8icqG9RByQJSGlFKUaBVNHgFoFkdAnO/chTwUg3V9lChoBmgJaA9DCMLDtG/uMmxAlIaUUpRoFU0pAWgWR0Cc8CDgqEvkdX2UKGgGaAloD0MI5Ga4Ad+uckCUhpRSlGgVTYkBaBZHQJz0kHX2/SJ1fZQoaAZoCWgPQwgi/8wg/vZxQJSGlFKUaBVNKAFoFkdAnPSb433pOnV9lChoBmgJaA9DCEjeOZQh/nFAlIaUUpRoFU0lAWgWR0Cc9MMFEAo5dX2UKGgGaAloD0MIbQA2IMJnb0CUhpRSlGgVTQMBaBZHQJz20cR15jZ1fZQoaAZoCWgPQwhUVP1K50lxQJSGlFKUaBVNOgFoFkdAnPgGfoRqXXV9lChoBmgJaA9DCFgCKbGrJXBAlIaUUpRoFU0zAWgWR0CdCyYTCcgAdX2UKGgGaAloD0MIHNE961rxcECUhpRSlGgVTQcBaBZHQJ0LmgWac7R1fZQoaAZoCWgPQwheFD3wMZBwQJSGlFKUaBVNPwFoFkdAnQwdvjwQUnV9lChoBmgJaA9DCMUgsHLowWBAlIaUUpRoFU3oA2gWR0CdDGmNipeedX2UKGgGaAloD0MIqb2ItuP1cECUhpRSlGgVTXMBaBZHQJ0MaeSSvDB1fZQoaAZoCWgPQwiBPSZSGuRtQJSGlFKUaBVNJQFoFkdAnQx71mJ3xHV9lChoBmgJaA9DCNUD5iFTdm1AlIaUUpRoFU1CAWgWR0CdDreoUBXCdX2UKGgGaAloD0MIwJMWLquBcECUhpRSlGgVTVMBaBZHQJ0O+5rgwXZ1fZQoaAZoCWgPQwglICbhwsNkQJSGlFKUaBVN6ANoFkdAnQ/W/WUbDXV9lChoBmgJaA9DCMZP4948ZHBAlIaUUpRoFU0pAWgWR0CdErFuejEfdX2UKGgGaAloD0MIJT53gj2pcUCUhpRSlGgVTTYBaBZHQJ0TClVLi/B1fZQoaAZoCWgPQwjGUE60q1hwQJSGlFKUaBVNUQJoFkdAnROp5NXYDnV9lChoBmgJaA9DCM1Xycdu23FAlIaUUpRoFU1gAWgWR0CdFIqagElmdX2UKGgGaAloD0MI06BoHgDvcECUhpRSlGgVTQMBaBZHQJ0VL5dnkDJ1fZQoaAZoCWgPQwhF9dbAViFwQJSGlFKUaBVNJgFoFkdAnRWRwMpgC3V9lChoBmgJaA9DCPkUAOOZtG9AlIaUUpRoFU1RAWgWR0CdFgaVD8cddX2UKGgGaAloD0MIPGnhsgr/cUCUhpRSlGgVTS4BaBZHQJ0WO+pOvdN1fZQoaAZoCWgPQwgyIlFoWVtxQJSGlFKUaBVNIgFoFkdAnRaEeU6gd3V9lChoBmgJaA9DCPloccawBHFAlIaUUpRoFU1PAWgWR0CdFuN+b3GodX2UKGgGaAloD0MIrMd9q/W+b0CUhpRSlGgVTRkBaBZHQJ0YaaAnUlR1fZQoaAZoCWgPQwjRPIBF/ndxQJSGlFKUaBVNGQFoFkdAnRitWMju8nV9lChoBmgJaA9DCFCop49AWnJAlIaUUpRoFU2RAWgWR0CdGiRxcVxkdX2UKGgGaAloD0MIcR+5NWnlcUCUhpRSlGgVTToBaBZHQJ0al6F/QSl1fZQoaAZoCWgPQwio4zEDleBaQJSGlFKUaBVN6ANoFkdAnRvcMiKR+3V9lChoBmgJaA9DCEp6GFqdNW5AlIaUUpRoFU0rAWgWR0CdHLjn3cpLdX2UKGgGaAloD0MIAFXcuAVAcECUhpRSlGgVTTQBaBZHQJ0dV4ptrKx1fZQoaAZoCWgPQwi8XS9NkTZxQJSGlFKUaBVNFQFoFkdAnR4z8tPHk3V9lChoBmgJaA9DCD0LQnlfV3FAlIaUUpRoFU0LAWgWR0CdHjsbNr0rdX2UKGgGaAloD0MIvobguAzicECUhpRSlGgVTToBaBZHQJ0e1TDO1OV1fZQoaAZoCWgPQwiBlUOL7AxtQJSGlFKUaBVNFwFoFkdAnR80ofCAMHV9lChoBmgJaA9DCIQOuoSD23BAlIaUUpRoFU0fAWgWR0CdH0NBnjABdX2UKGgGaAloD0MIhH8RNGZbc0CUhpRSlGgVTWMBaBZHQJ0fWeGwiaB1fZQoaAZoCWgPQwhlUdhF0f9BQJSGlFKUaBVL4GgWR0CdH8fChvitdX2UKGgGaAloD0MI0zB8REzDcUCUhpRSlGgVTTcBaBZHQJ0gk6kqMFV1fZQoaAZoCWgPQwjxuKgWUUByQJSGlFKUaBVNfAJoFkdAnSFGxptaZHV9lChoBmgJaA9DCKZfIt56NHJAlIaUUpRoFU12AWgWR0CdIgIv8IiUdX2UKGgGaAloD0MIjC5vDhc6ckCUhpRSlGgVTSEBaBZHQJ0kjah6By11fZQoaAZoCWgPQwiOA6+WO4RvQJSGlFKUaBVNjQFoFkdAnSSYgA6uGXV9lChoBmgJaA9DCPpeQ3Dc1HBAlIaUUpRoFU1nAWgWR0CdJRSpR4yHdX2UKGgGaAloD0MIbt3NU93JcUCUhpRSlGgVS/FoFkdAnSVdb1RLsnV9lChoBmgJaA9DCDenkgGgR21AlIaUUpRoFU0qAWgWR0CdJkpkf9xZdX2UKGgGaAloD0MInUmbqnsyckCUhpRSlGgVTRgBaBZHQJ0nPn6l+E11fZQoaAZoCWgPQwiC597Dpa5wQJSGlFKUaBVNIwFoFkdAnSg+otL+P3V9lChoBmgJaA9DCGx8JvungHJAlIaUUpRoFU0tAWgWR0CdKH5iExqPdX2UKGgGaAloD0MIzqlkACiVb0CUhpRSlGgVTR8BaBZHQJ0osj3VTaV1fZQoaAZoCWgPQwhDAHDs2fNuQJSGlFKUaBVNXAFoFkdAnSjsaS9ug3V9lChoBmgJaA9DCHVat0FtbWtAlIaUUpRoFU1JAWgWR0CdKVFDfFaTdX2UKGgGaAloD0MIJsXHJ2SecECUhpRSlGgVTc8BaBZHQJ0rIzUI9kl1fZQoaAZoCWgPQwiAmlq2VkJvQJSGlFKUaBVNPAFoFkdAnStVmWdEs3V9lChoBmgJaA9DCHRBfcscOm9AlIaUUpRoFU0kAWgWR0CdK3JT2nKodWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2_IngoTB303_v0_1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:839873cd9504a9af58e1319a2059a0f7ca44cb03289a2b8760302bfb23bc6771
|
3 |
+
size 147214
|
ppo-LunarLander-v2_IngoTB303_v0_1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2_IngoTB303_v0_1/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f561a881a60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f561a881af0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f561a881b80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f561a881c10>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f561a881ca0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f561a881d30>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f561a881dc0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f561a881e50>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f561a881ee0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f561a881f70>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f561a884040>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f561a87e4e0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671449325760939300,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEr3uD5Nhxw/vefcvaHG0L5M3Ow98TqzvQAAAAAAAAAARiQKPocykj8eQps+wR7lvkHqEj74QUA9AAAAAAAAAABG4Bi+x4SzPkJeUT5yJ12+V0QfvHuscT0AAAAAAAAAAIb6Az7xsUY+TsMevqVu4b0AXmY8joNSvQAAAAAAAAAAihCNPtBk6z4MDQa+jaSHvpi7oT1eIzA9AAAAAAAAAAAABvU8n5rKu9Z6lLxXK5A8ICc5vRV3cz0AAIA/AACAPwAOqj323H266rZKONPAJDMaloU5IKBrtwAAgD8AAAAARhZNPvDR8D6eEIW+Dc/EvnlyjLw+dQq+AAAAAAAAAADzj/Y9gqyJP7a3aT4dhMa+mOglPgfwxDsAAAAAAAAAALPuYj6oULU+mreDvlNUkr662ei8J6oLvgAAAAAAAAAAGsa/PTggjrtNMfS84LD6O9DwvTziH+G8AACAPwAAgD8AU0c+1K6nP0Yl4j7ekcC+rYqoPmaCfT4AAAAAAAAAADP/ljwfRNS7DnxyuifFrjxak1I96XuRvQAAgD8AAIA/zf5jPdrDqj4hcx09Ja12vvpbfD3HUB88AAAAAAAAAADa7ZS9j7p2uiYuTDv8vo417nIdOwa5a7oAAIA/AAAAAGZSgTw2BTA9h2WiPeHJyL3txHg9MvSyvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIH6LRHQQHcECUhpRSlIwBbJRNQgGMAXSUR0Ccv9okAxSHdX2UKGgGaAloD0MIdt8xPLaicECUhpRSlGgVTTEBaBZHQJzAHr3TNMZ1fZQoaAZoCWgPQwha1Ce5g59wQJSGlFKUaBVNpQNoFkdAnMDP5Lytm3V9lChoBmgJaA9DCPDfvDgxmnBAlIaUUpRoFU01AWgWR0CcweE87p3YdX2UKGgGaAloD0MInPpA8k58bkCUhpRSlGgVTf8BaBZHQJzB/XarWAh1fZQoaAZoCWgPQwiRtvEn6k9xQJSGlFKUaBVNMwFoFkdAnMK8guAZsXV9lChoBmgJaA9DCC1cVmEzVnJAlIaUUpRoFU1ZAWgWR0Cc2BqfOD8MdX2UKGgGaAloD0MI9z3qr5dPckCUhpRSlGgVTR4BaBZHQJzZx06o2n91fZQoaAZoCWgPQwh/UBcplEtsQJSGlFKUaBVNvAFoFkdAnNpAHmig03V9lChoBmgJaA9DCPpH36TpenFAlIaUUpRoFU0LAWgWR0Cc2osjVx0ddX2UKGgGaAloD0MIou2YuitBcECUhpRSlGgVTQ4BaBZHQJzbLJA+pwV1fZQoaAZoCWgPQwgbLQd6qPpuQJSGlFKUaBVNWwFoFkdAnNtcRYigTXV9lChoBmgJaA9DCB7gSQsXzm1AlIaUUpRoFU0lAWgWR0Cc247SApazdX2UKGgGaAloD0MIqRJlbyk0b0CUhpRSlGgVTRABaBZHQJzbzKRuCPJ1fZQoaAZoCWgPQwiaWyGsRoNxQJSGlFKUaBVNKgFoFkdAnNwaDK5kLHV9lChoBmgJaA9DCJT5R99kk3BAlIaUUpRoFU0dAWgWR0Cc3HVARkEtdX2UKGgGaAloD0MIdJZZhKJGckCUhpRSlGgVTW4BaBZHQJzcdi9Zid91fZQoaAZoCWgPQwgucHmsmZJuQJSGlFKUaBVNLgFoFkdAnN2KYE4ecXV9lChoBmgJaA9DCAwEATI0VXFAlIaUUpRoFU0NAWgWR0Cc3dE9t/FzdX2UKGgGaAloD0MIL+Blho0Ec0CUhpRSlGgVTU0BaBZHQJzfbgVGkN51fZQoaAZoCWgPQwirBfaYyHNvQJSGlFKUaBVNQQFoFkdAnOAHAdn003V9lChoBmgJaA9DCJtZSwFpS1FAlIaUUpRoFUvYaBZHQJzg09lmOEN1fZQoaAZoCWgPQwgwuycPC3NxQJSGlFKUaBVNLAJoFkdAnOJtMoMKC3V9lChoBmgJaA9DCAMJih9jOm9AlIaUUpRoFU0dAWgWR0Cc4oAhStNjdX2UKGgGaAloD0MIpb3BF2YFcECUhpRSlGgVTRIBaBZHQJzjbwBo24x1fZQoaAZoCWgPQwhP6PUncf1sQJSGlFKUaBVNOgFoFkdAnOPwTVUdaXV9lChoBmgJaA9DCJkMx/OZSHBAlIaUUpRoFU06AWgWR0Cc5PMxXXAedX2UKGgGaAloD0MIHauUnqmUcUCUhpRSlGgVTTYBaBZHQJzlAjLSuyN1fZQoaAZoCWgPQwiZnxua8ghwQJSGlFKUaBVNQwFoFkdAnOZbfk3juXV9lChoBmgJaA9DCF4vTRHgNm9AlIaUUpRoFU0RAWgWR0Cc5m3BpHqedX2UKGgGaAloD0MITySYamZFcUCUhpRSlGgVTVQBaBZHQJzmfJvHcUN1fZQoaAZoCWgPQwjk1w+xActyQJSGlFKUaBVNIgFoFkdAnOaeXZ5AyHV9lChoBmgJaA9DCMug2uBEbHJAlIaUUpRoFU1sAWgWR0Cc54NI9TxYdX2UKGgGaAloD0MIkzmWd5VfckCUhpRSlGgVTV4BaBZHQJzqtyeZof11fZQoaAZoCWgPQwh3u16aohdvQJSGlFKUaBVNUQFoFkdAnOr3iBGx2XV9lChoBmgJaA9DCJpAEYtYanBAlIaUUpRoFU0dAWgWR0Cc68cBltj1dX2UKGgGaAloD0MIBARz9DiqcECUhpRSlGgVTVoBaBZHQJzsM7DEWIp1fZQoaAZoCWgPQwhMcOoDCX1wQJSGlFKUaBVNQgFoFkdAnO0KeXiR4nV9lChoBmgJaA9DCMWrrG2KknFAlIaUUpRoFU0gAWgWR0Cc7V+fh/AkdX2UKGgGaAloD0MInZyhuKNZcECUhpRSlGgVTTsBaBZHQJztz56+nIh1fZQoaAZoCWgPQwgZ/tMNlLlwQJSGlFKUaBVNEgFoFkdAnO4E9ECvHXV9lChoBmgJaA9DCHIXYYpyim1AlIaUUpRoFU0FAWgWR0Cc7vYL9deIdX2UKGgGaAloD0MIlDKpoQ3bcUCUhpRSlGgVTTkBaBZHQJzvLuy/sVt1fZQoaAZoCWgPQwj8icqG9RByQJSGlFKUaBVNHgFoFkdAnO/chTwUg3V9lChoBmgJaA9DCMLDtG/uMmxAlIaUUpRoFU0pAWgWR0Cc8CDgqEvkdX2UKGgGaAloD0MI5Ga4Ad+uckCUhpRSlGgVTYkBaBZHQJz0kHX2/SJ1fZQoaAZoCWgPQwgi/8wg/vZxQJSGlFKUaBVNKAFoFkdAnPSb433pOnV9lChoBmgJaA9DCEjeOZQh/nFAlIaUUpRoFU0lAWgWR0Cc9MMFEAo5dX2UKGgGaAloD0MIbQA2IMJnb0CUhpRSlGgVTQMBaBZHQJz20cR15jZ1fZQoaAZoCWgPQwhUVP1K50lxQJSGlFKUaBVNOgFoFkdAnPgGfoRqXXV9lChoBmgJaA9DCFgCKbGrJXBAlIaUUpRoFU0zAWgWR0CdCyYTCcgAdX2UKGgGaAloD0MIHNE961rxcECUhpRSlGgVTQcBaBZHQJ0LmgWac7R1fZQoaAZoCWgPQwheFD3wMZBwQJSGlFKUaBVNPwFoFkdAnQwdvjwQUnV9lChoBmgJaA9DCMUgsHLowWBAlIaUUpRoFU3oA2gWR0CdDGmNipeedX2UKGgGaAloD0MIqb2ItuP1cECUhpRSlGgVTXMBaBZHQJ0MaeSSvDB1fZQoaAZoCWgPQwiBPSZSGuRtQJSGlFKUaBVNJQFoFkdAnQx71mJ3xHV9lChoBmgJaA9DCNUD5iFTdm1AlIaUUpRoFU1CAWgWR0CdDreoUBXCdX2UKGgGaAloD0MIwJMWLquBcECUhpRSlGgVTVMBaBZHQJ0O+5rgwXZ1fZQoaAZoCWgPQwglICbhwsNkQJSGlFKUaBVN6ANoFkdAnQ/W/WUbDXV9lChoBmgJaA9DCMZP4948ZHBAlIaUUpRoFU0pAWgWR0CdErFuejEfdX2UKGgGaAloD0MIJT53gj2pcUCUhpRSlGgVTTYBaBZHQJ0TClVLi/B1fZQoaAZoCWgPQwjGUE60q1hwQJSGlFKUaBVNUQJoFkdAnROp5NXYDnV9lChoBmgJaA9DCM1Xycdu23FAlIaUUpRoFU1gAWgWR0CdFIqagElmdX2UKGgGaAloD0MI06BoHgDvcECUhpRSlGgVTQMBaBZHQJ0VL5dnkDJ1fZQoaAZoCWgPQwhF9dbAViFwQJSGlFKUaBVNJgFoFkdAnRWRwMpgC3V9lChoBmgJaA9DCPkUAOOZtG9AlIaUUpRoFU1RAWgWR0CdFgaVD8cddX2UKGgGaAloD0MIPGnhsgr/cUCUhpRSlGgVTS4BaBZHQJ0WO+pOvdN1fZQoaAZoCWgPQwgyIlFoWVtxQJSGlFKUaBVNIgFoFkdAnRaEeU6gd3V9lChoBmgJaA9DCPloccawBHFAlIaUUpRoFU1PAWgWR0CdFuN+b3GodX2UKGgGaAloD0MIrMd9q/W+b0CUhpRSlGgVTRkBaBZHQJ0YaaAnUlR1fZQoaAZoCWgPQwjRPIBF/ndxQJSGlFKUaBVNGQFoFkdAnRitWMju8nV9lChoBmgJaA9DCFCop49AWnJAlIaUUpRoFU2RAWgWR0CdGiRxcVxkdX2UKGgGaAloD0MIcR+5NWnlcUCUhpRSlGgVTToBaBZHQJ0al6F/QSl1fZQoaAZoCWgPQwio4zEDleBaQJSGlFKUaBVN6ANoFkdAnRvcMiKR+3V9lChoBmgJaA9DCEp6GFqdNW5AlIaUUpRoFU0rAWgWR0CdHLjn3cpLdX2UKGgGaAloD0MIAFXcuAVAcECUhpRSlGgVTTQBaBZHQJ0dV4ptrKx1fZQoaAZoCWgPQwi8XS9NkTZxQJSGlFKUaBVNFQFoFkdAnR4z8tPHk3V9lChoBmgJaA9DCD0LQnlfV3FAlIaUUpRoFU0LAWgWR0CdHjsbNr0rdX2UKGgGaAloD0MIvobguAzicECUhpRSlGgVTToBaBZHQJ0e1TDO1OV1fZQoaAZoCWgPQwiBlUOL7AxtQJSGlFKUaBVNFwFoFkdAnR80ofCAMHV9lChoBmgJaA9DCIQOuoSD23BAlIaUUpRoFU0fAWgWR0CdH0NBnjABdX2UKGgGaAloD0MIhH8RNGZbc0CUhpRSlGgVTWMBaBZHQJ0fWeGwiaB1fZQoaAZoCWgPQwhlUdhF0f9BQJSGlFKUaBVL4GgWR0CdH8fChvitdX2UKGgGaAloD0MI0zB8REzDcUCUhpRSlGgVTTcBaBZHQJ0gk6kqMFV1fZQoaAZoCWgPQwjxuKgWUUByQJSGlFKUaBVNfAJoFkdAnSFGxptaZHV9lChoBmgJaA9DCKZfIt56NHJAlIaUUpRoFU12AWgWR0CdIgIv8IiUdX2UKGgGaAloD0MIjC5vDhc6ckCUhpRSlGgVTSEBaBZHQJ0kjah6By11fZQoaAZoCWgPQwiOA6+WO4RvQJSGlFKUaBVNjQFoFkdAnSSYgA6uGXV9lChoBmgJaA9DCPpeQ3Dc1HBAlIaUUpRoFU1nAWgWR0CdJRSpR4yHdX2UKGgGaAloD0MIbt3NU93JcUCUhpRSlGgVS/FoFkdAnSVdb1RLsnV9lChoBmgJaA9DCDenkgGgR21AlIaUUpRoFU0qAWgWR0CdJkpkf9xZdX2UKGgGaAloD0MInUmbqnsyckCUhpRSlGgVTRgBaBZHQJ0nPn6l+E11fZQoaAZoCWgPQwiC597Dpa5wQJSGlFKUaBVNIwFoFkdAnSg+otL+P3V9lChoBmgJaA9DCGx8JvungHJAlIaUUpRoFU0tAWgWR0CdKH5iExqPdX2UKGgGaAloD0MIzqlkACiVb0CUhpRSlGgVTR8BaBZHQJ0osj3VTaV1fZQoaAZoCWgPQwhDAHDs2fNuQJSGlFKUaBVNXAFoFkdAnSjsaS9ug3V9lChoBmgJaA9DCHVat0FtbWtAlIaUUpRoFU1JAWgWR0CdKVFDfFaTdX2UKGgGaAloD0MIJsXHJ2SecECUhpRSlGgVTc8BaBZHQJ0rIzUI9kl1fZQoaAZoCWgPQwiAmlq2VkJvQJSGlFKUaBVNPAFoFkdAnStVmWdEs3V9lChoBmgJaA9DCHRBfcscOm9AlIaUUpRoFU0kAWgWR0CdK3JT2nKodWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2_IngoTB303_v0_1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d539063144019ae70355ea8d301b81eaf7f726ec4052cc14181d35536b7720e
|
3 |
+
size 87929
|
ppo-LunarLander-v2_IngoTB303_v0_1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ab4c8d87351be72cb9098ed9568935936908bc72f4d6e3cbf190359b28f4215
|
3 |
+
size 43201
|
ppo-LunarLander-v2_IngoTB303_v0_1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2_IngoTB303_v0_1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (238 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 255.50999791639342, "std_reward": 21.939061588333317, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-19T12:00:07.267598"}
|