heloise-chomet commited on
Commit
d0a34bd
·
verified ·
1 Parent(s): 74f6758

Update README.md

Browse files

Updated description of MACE foundation model.

Files changed (1) hide show
  1. README.md +56 -0
README.md CHANGED
@@ -1,3 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ## License summary
2
 
3
  1. The Licensed Models are **only** available under this License for Non-Commercial Purposes.
 
1
+ # MACE
2
+ ## Reference
3
+ Ilyes Batatia, Dávid Péter Kovács, Gregor N. C. Simm, Christoph Ortner, and Gábor Csányi.
4
+ Mace: Higher order equivariant message passing neural networks for fast and accurate force fields,
5
+ 2023. URL: https://arxiv.org/abs/2206.07697.
6
+ ## How to Use
7
+ For complete usage instructions, please refer to our [documentation](https://instadeep.github.io/mlip)
8
+ ## Model architecture
9
+ | Parameter | Value | Description |
10
+ |---------------------------------|----------------------|-----------------------------------------------------|
11
+ | `num_layers` | `2` | Number of MACE layers. |
12
+ | `num_channels` | `128` | Number of channels. |
13
+ | `l_max` | `3` | Maximal degree of spherical harmonics. |
14
+ | `node_symmetry` | `1` | Highest degree of node features. |
15
+ | `correlation` | `3` | Maximum correlation order. |
16
+ | `readout_irreps` | `["16x0e", "0e"]` | Irreps for the readout block. |
17
+ | `num_readout_heads` | `1` | Number of readout heads. |
18
+ | `include_pseudotensors` | `false` | Whether all parities are kept. |
19
+ | `num_bessel` | `8` | Number of Bessel basis functions. |
20
+ | `activation` | `silu` | Activation function in the non-linear readout block.|
21
+ | `radial_envelope` | `polynomial_envelope`| Radial envelope function. |
22
+ | `symmetric_tensor_product_basis`| `false` | Whether to use a symmetric tensor product basis. |
23
+ | `atomic_energies` | `average` | Treatement of atomic energies. |
24
+ | `avg_num_neighbors` | `null` | Mean number of neighbors. |
25
+
26
+ For more information about MACE hyperparameters,
27
+ please refer to our [documentation](https://instadeep.github.io/mlip/api_reference/models/mace.html#mlip.models.mace.config.MaceConfig)
28
+ ## Training
29
+ Training is performed over 220 epochs, with an exponential moving average (EMA) decay rate of 0.99.
30
+ The model employs a Huber loss function with scheduled weights for the energy and force components.
31
+ Initially, the energy term is weighted at 40 and the force term at 1000.
32
+ At epoch 115, these weights are flipped.
33
+ We use our default MLIP optimizer in v1.0.0 with the following settings:
34
+ | Parameter | Value | Description |
35
+ |----------------------------------|---------|-----------------------------------------------------|
36
+ | `init_learning_rate` | `0.01` | Initial learning rate. |
37
+ | `peak_learning_rate` | `0.01` | Peak learning rate. |
38
+ | `final_learning_rate` | `0.01` | Final learning rate. |
39
+ | `weight_decay` | `0` | Weight decay. |
40
+ | `warmup_steps` | `4000` | Number of optimizer warm-up steps. |
41
+ | `transition_steps` | `360000`| Number of optimizer transition steps. |
42
+ | `grad_norm` | `500` | Gradient norm used for gradient clipping. |
43
+ | `num_gradient_accumulation_steps`| `1` | Steps to accumulate before taking an optimizer step.|
44
+ For more information about the optimizer,
45
+ please refer to our [documentation](https://instadeep.github.io/mlip/api_reference/training/optimizer.html#mlip.training.optimizer_config.OptimizerConfig)
46
+ ## Dataset
47
+ | Parameter | Value | Description |
48
+ |-----------------------------|-------|--------------------------------------------|
49
+ | `graph_cutoff_angstrom` | `5` | Graph cutoff distance (in Å). |
50
+ | `max_n_node` | `32` | Maximum number of nodes allowed in a batch.|
51
+ | `max_n_edge` | `288` | Maximum number of edges allowed in a batch.|
52
+ | `batch_size` | `64` | Number of graphs in a batch. |
53
+ This model was trained on the [SPICE2_curated dataset](https://huggingface.co/datasets/InstaDeepAI/SPICE2-curated).
54
+ For more information about dataset configuration
55
+ please refer to our [documentation](https://instadeep.github.io/mlip/api_reference/data/dataset_configs.html#mlip.data.configs.GraphDatasetBuilderConfig)
56
+
57
  ## License summary
58
 
59
  1. The Licensed Models are **only** available under this License for Non-Commercial Purposes.