heloise-chomet commited on
Commit
af077e0
·
verified ·
1 Parent(s): c145591

Update README.md

Browse files

Updated model card with links to documentation

Files changed (1) hide show
  1. README.md +53 -0
README.md CHANGED
@@ -1,3 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ## License summary
2
 
3
  1. The Licensed Models are **only** available under this License for Non-Commercial Purposes.
 
1
+ # ViSNet
2
+ ## Reference
3
+ Yusong Wang, Tong Wang, Shaoning Li, Xinheng He, Mingyu Li, Zun Wang, Nanning Zheng, Bin Shao, and Tie-Yan Liu.
4
+ Enhancing geometric representations for molecules with equivariant vector-scalar interactive message passing.
5
+ Nature Communications, 15(1), January 2024. ISSN: 2041-1723.
6
+ URL: https://dx.doi.org/10.1038/s41467-023-43720-2.
7
+ ## How to Use
8
+ For complete usage instructions and more information, please refer to our [documentation](https://instadeep.github.io/mlip)
9
+ ## Model architecture
10
+ | Parameter | Value | Description |
11
+ |--------------------|----------|--------------------------------------------------------------------------|
12
+ | `num_layers` | `4` | Number of ViSNet layers. |
13
+ | `num_channels` | `128` | Number of channels. |
14
+ | `l_max` | `2` | Highest harmonic order included in the Spherical Harmonics series. |
15
+ | `num_heads` | `8` | Number of heads in the attention block. |
16
+ | `num_rbf` | `32` | Number of radial basis functions in the embedding block. |
17
+ | `trainable_rbf` | `False` | Whether to add learnable weights to the radial embedding basis functions.|
18
+ | `activation` | `silu` | Activation function for the output block. |
19
+ | `attn_activation` | `silu` | Activation function for the attention block. |
20
+ | `vecnorm_type` | `None` | Type of the vector norm. |
21
+ | `atomic_energies` | `average`| Treatment of the atomic energies. |
22
+ | `avg_um_neighbors` | `None` | Mean number of neighbors. |
23
+ For more information about ViSNet hyperparameters,
24
+ please refer to our [documentation](https://instadeep.github.io/mlip/api_reference/models/visnet.html#mlip.models.visnet.config.VisnetConfig)
25
+ ## Training
26
+ Training is performed over 220 epochs, with an exponential moving average (EMA) decay rate of 0.99.
27
+ The model employs a Huber loss function with scheduled weights for the energy and force components.
28
+ Initially, the energy term is weighted at 40 and the force term at 1000.
29
+ At epoch 115, these weights are flipped.
30
+ We use our default MLIP optimizer in v1.0.0 with the following settings:
31
+ | Parameter | Value | Description |
32
+ |----------------------------------|----------------|-----------------------------------------------------------------|
33
+ | `init_learning_rate` | `0.0001` | Initial learning rate. |
34
+ | `peak_learning_rate` | `0.0001` | Peak learning rate. |
35
+ | `final_learning_rate` | `0.0001` | Final learning rate. |
36
+ | `weight_decay` | `0` | Weight decay. |
37
+ | `warmup_steps` | `4000` | Number of optimizer warm-up steps. |
38
+ | `transition_steps` | `360000` | Number of optimizer transition steps. |
39
+ | `grad_norm` | `500` | Gradient norm used for gradient clipping. |
40
+ | `num_gradient_accumulation_steps`| `1` | Steps to accumulate before taking an optimizer step. |
41
+ For more information about the optimizer,
42
+ please refer to our [documentation](https://instadeep.github.io/mlip/api_reference/training/optimizer.html#mlip.training.optimizer_config.OptimizerConfig)
43
+ ## Dataset
44
+ | Parameter | Value | Description |
45
+ |-----------------------------|-------|--------------------------------------------|
46
+ | `graph_cutoff_angstrom` | `5` | Graph cutoff distance (in Å). |
47
+ | `max_n_node` | `32` | Maximum number of nodes allowed in a batch.|
48
+ | `max_n_edge` | `288` | Maximum number of edges allowed in a batch.|
49
+ | `batch_size` | `16` | Number of graphs in a batch. |
50
+ This model was trained on the [SPICE2_curated dataset](https://huggingface.co/datasets/InstaDeepAI/SPICE2-curated).
51
+ For more information about dataset configuration
52
+ please refer to our [documentation](https://instadeep.github.io/mlip/api_reference/data/dataset_configs.html#mlip.data.configs.GraphDatasetBuilderConfig)
53
+
54
  ## License summary
55
 
56
  1. The Licensed Models are **only** available under this License for Non-Commercial Purposes.