replace with autogptq format
Browse filesSigned-off-by: wenhuach <[email protected]>
- README.md +0 -161
- config.json +216 -350
- generation_config.json +1 -1
- model-00001-of-00007.safetensors +0 -3
- model-00002-of-00007.safetensors +0 -3
- model-00003-of-00007.safetensors +0 -3
- model-00005-of-00007.safetensors +0 -3
- model-00006-of-00007.safetensors +0 -3
- model-00007-of-00007.safetensors +0 -3
- model-00004-of-00007.safetensors → model.safetensors +2 -2
- model.safetensors.index.json +0 -0
- quantization_config.json +0 -360
- quantize_config.json +229 -0
README.md
DELETED
@@ -1,161 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
datasets:
|
4 |
-
- NeelNanda/pile-10k
|
5 |
-
|
6 |
-
---
|
7 |
-
|
8 |
-
## Model Details
|
9 |
-
|
10 |
-
This model is an int4 model with group_size 128 of [Qwen/Qwen2-57B-A14B-Instruct](https://huggingface.co/Qwen/Qwen2-57B-A14B-Instruct) generated by [intel/auto-round](https://github.com/intel/auto-round), auto-round is needed to run this model
|
11 |
-
|
12 |
-
## How To Use
|
13 |
-
|
14 |
-
### INT4 CPU/CUDA Inference
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
```python
|
19 |
-
##git clone https://github.com/intel/auto-round.git
|
20 |
-
##cd auto-round && pip install -vvv --no-build-isolation -e .
|
21 |
-
from auto_round import AutoHfQuantizer ##must import
|
22 |
-
import torch
|
23 |
-
from transformers import AutoModelForCausalLM,AutoTokenizer
|
24 |
-
quantized_model_dir = "Intel/Qwen2-57B-A14B-Instruct-int4-inc"
|
25 |
-
tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir)
|
26 |
-
|
27 |
-
model = AutoModelForCausalLM.from_pretrained(
|
28 |
-
quantized_model_dir,
|
29 |
-
torch_dtype=torch.float16,
|
30 |
-
device_map="auto",
|
31 |
-
)
|
32 |
-
prompt = "There is a girl who likes adventure,"
|
33 |
-
messages = [
|
34 |
-
{"role": "system", "content": "You are a helpful assistant."},
|
35 |
-
{"role": "user", "content": prompt}
|
36 |
-
]
|
37 |
-
|
38 |
-
tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir)
|
39 |
-
text = tokenizer.apply_chat_template(
|
40 |
-
messages,
|
41 |
-
tokenize=False,
|
42 |
-
add_generation_prompt=True
|
43 |
-
)
|
44 |
-
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
45 |
-
|
46 |
-
generated_ids = model.generate(
|
47 |
-
model_inputs.input_ids,
|
48 |
-
max_new_tokens=50, ##change this to align with the official usage
|
49 |
-
do_sample=False ##change this to align with the official usage
|
50 |
-
)
|
51 |
-
generated_ids = [
|
52 |
-
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
53 |
-
]
|
54 |
-
|
55 |
-
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
56 |
-
print(response)
|
57 |
-
|
58 |
-
##prompt = "请介绍一下阿里巴巴公司"
|
59 |
-
##阿里巴巴集团是一家中国跨国科技公司,成立于1999年,总部位于杭州。阿里巴巴的业务涵盖了电子商务、零售、金融、物流、云计算等多个领域,是全球最大的电子商务公司之一。\n 阿里巴巴旗下拥有淘宝网、天猫、
|
60 |
-
|
61 |
-
##prompt = "9.8大还是9.11大"
|
62 |
-
##9.8和9.11都是小数,但是9.8比9.11大。在数学中,小数的大小取决于它们的数值,数值越大则越“大”。在这个情况下,9.8的
|
63 |
-
|
64 |
-
##prompt = "Once upon a time,"
|
65 |
-
##there was a kingdom far, far away. In this kingdom, there lived a beautiful princess who had hair as golden as the sun and eyes as blue as the sea. The princess was kind and gentle, and everyone in the kingdom loved her dearly.
|
66 |
-
|
67 |
-
##prompt = "There is a girl who likes adventure,"
|
68 |
-
##That's great to hear! Adventure can be a wonderful way to explore new places, learn new things, and challenge yourself in exciting ways. If you're looking for ideas on how to embark on an adventure, here are a few suggestions: 1.
|
69 |
-
```
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
### Evaluate the model
|
74 |
-
|
75 |
-
pip3 install lm-eval==0.4.2
|
76 |
-
|
77 |
-
```bash
|
78 |
-
git clone https://github.com/intel/auto-round
|
79 |
-
cd auto-round/examples/language-modeling
|
80 |
-
python3 eval_042/evluation.py --model_name "Intel/Qwen2-57B-A14B-Instruct-int4-inc" --eval_bs 16 --tasks lambada_openai,hellaswag,piqa,winogrande,truthfulqa_mc1,openbookqa,boolq,arc_easy,arc_challenge,mmlu,gsm8k,cmmlu,ceval-valid --trust_remote_code
|
81 |
-
```
|
82 |
-
|
83 |
-
| Metric | BF16 | INT4-AutoRound | [official GPTQ](https://huggingface.co/Qwen/Qwen2-57B-A14B-Instruct-GPTQ-Int4) |
|
84 |
-
| :---------------------- | :------ | :-------------- | :------------------------------------------------------------ |
|
85 |
-
| Avg | 0.7040 | 0.7043 | 0.6990 |
|
86 |
-
| mmlu | 0.7438 | 0.7408 | 0.7409 |
|
87 |
-
| cmmlu | 0.8505 | 0.8448 | 0.8475 |
|
88 |
-
| ceval-valid | 0.8767 | 0.8611 | 0.8507 |
|
89 |
-
| gsm8k 5 shots (strict) | 0.7627 | 0.7657 | 0.7597 |
|
90 |
-
| lambada_openai | 0.7452 | 0.7444 | 0.7524 |
|
91 |
-
| hellaswag | 0.6517 | 0.6475 | 0.6471 |
|
92 |
-
| winogrande | 0.7245 | 0.7285 | 0.7198 |
|
93 |
-
| piqa | 0.8058 | 0.8058 | 0.8041 |
|
94 |
-
| truthfulqa_mc1 | 0.4345 | 0.4321 | 0.4272 |
|
95 |
-
| openbookqa | 0.3400 | 0.3560 | 0.3300 |
|
96 |
-
| boolq | 0.8835 | 0.8844 | 0.8810 |
|
97 |
-
| arc_easy | 0.8035 | 0.8051 | 0.8001 |
|
98 |
-
| arc_challenge | 0.5299 | 0.5392 | 0.5265 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
## Reproduce
|
103 |
-
|
104 |
-
Here is the sample command to reproduce the model.
|
105 |
-
|
106 |
-
```bash
|
107 |
-
git clone https://github.com/intel/auto-round
|
108 |
-
cd auto-round/examples/language-modeling
|
109 |
-
pip install -r requirements.txt
|
110 |
-
python3 main.py \
|
111 |
-
--model_name Qwen/Qwen2-57B-A14B-Instruct \
|
112 |
-
--device 0 \
|
113 |
-
--group_size 128 \
|
114 |
-
--nsamples 512 \
|
115 |
-
--bits 4 \
|
116 |
-
--iter 1000 \
|
117 |
-
--disable_eval \
|
118 |
-
--fp_layers "shared_expert_gate,gate" \
|
119 |
-
--deployment_device 'auto_round' \
|
120 |
-
--output_dir "./tmp_autoround"
|
121 |
-
```
|
122 |
-
|
123 |
-
we found the output of model.layers.3.mlp.shared_expert.down_proj could be up to ~50k if adding chat template and will cause some backend like exllamav2 oeverflow. so after quantizing the model, please manually add this to config.json
|
124 |
-
|
125 |
-
~~~bash
|
126 |
-
"extra_config": {
|
127 |
-
"model.layers.3.mlp.shared_expert.down_proj": {
|
128 |
-
"clip": true
|
129 |
-
},
|
130 |
-
}
|
131 |
-
|
132 |
-
~~~
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
## Ethical Considerations and Limitations
|
137 |
-
|
138 |
-
The model can produce factually incorrect output, and should not be relied on to produce factually accurate information. Because of the limitations of the pretrained model and the finetuning datasets, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
|
139 |
-
|
140 |
-
Therefore, before deploying any applications of the model, developers should perform safety testing.
|
141 |
-
|
142 |
-
## Caveats and Recommendations
|
143 |
-
|
144 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
|
145 |
-
|
146 |
-
Here are a couple of useful links to learn more about Intel's AI software:
|
147 |
-
|
148 |
-
* Intel Neural Compressor [link](https://github.com/intel/neural-compressor)
|
149 |
-
* Intel Extension for Transformers [link](https://github.com/intel/intel-extension-for-transformers)
|
150 |
-
|
151 |
-
## Disclaimer
|
152 |
-
|
153 |
-
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
## Cite
|
158 |
-
|
159 |
-
@article{cheng2023optimize, title={Optimize weight rounding via signed gradient descent for the quantization of llms}, author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao and Liu, Yi}, journal={arXiv preprint arXiv:2309.05516}, year={2023} }
|
160 |
-
|
161 |
-
[arxiv](https://arxiv.org/abs/2309.05516) [github](https://github.com/intel/auto-round)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -25,375 +25,241 @@
|
|
25 |
"output_router_logits": false,
|
26 |
"quantization_config": {
|
27 |
"amp": true,
|
28 |
-
"autoround_version": "0.3.
|
29 |
-
"backend": "auto_round:exllamav2",
|
30 |
"bits": 4,
|
|
|
31 |
"data_type": "int",
|
32 |
-
"
|
33 |
"enable_minmax_tuning": true,
|
|
|
34 |
"enable_quanted_input": true,
|
35 |
-
"extra_config": {
|
36 |
-
"model.layers.3.mlp.shared_expert.down_proj": {
|
37 |
-
"clip": true
|
38 |
-
},
|
39 |
-
"model.layers.0.mlp.gate": {
|
40 |
-
"bits": 32,
|
41 |
-
"data_type": "bfloat",
|
42 |
-
"group_size": null,
|
43 |
-
"sym": null
|
44 |
-
},
|
45 |
-
"model.layers.0.mlp.shared_expert_gate": {
|
46 |
-
"bits": 32,
|
47 |
-
"data_type": "bfloat",
|
48 |
-
"group_size": null,
|
49 |
-
"sym": null
|
50 |
-
},
|
51 |
-
"model.layers.1.mlp.gate": {
|
52 |
-
"bits": 32,
|
53 |
-
"data_type": "bfloat",
|
54 |
-
"group_size": null,
|
55 |
-
"sym": null
|
56 |
-
},
|
57 |
-
"model.layers.1.mlp.shared_expert_gate": {
|
58 |
-
"bits": 32,
|
59 |
-
"data_type": "bfloat",
|
60 |
-
"group_size": null,
|
61 |
-
"sym": null
|
62 |
-
},
|
63 |
-
"model.layers.10.mlp.gate": {
|
64 |
-
"bits": 32,
|
65 |
-
"data_type": "bfloat",
|
66 |
-
"group_size": null,
|
67 |
-
"sym": null
|
68 |
-
},
|
69 |
-
"model.layers.10.mlp.shared_expert_gate": {
|
70 |
-
"bits": 32,
|
71 |
-
"data_type": "bfloat",
|
72 |
-
"group_size": null,
|
73 |
-
"sym": null
|
74 |
-
},
|
75 |
-
"model.layers.11.mlp.gate": {
|
76 |
-
"bits": 32,
|
77 |
-
"data_type": "bfloat",
|
78 |
-
"group_size": null,
|
79 |
-
"sym": null
|
80 |
-
},
|
81 |
-
"model.layers.11.mlp.shared_expert_gate": {
|
82 |
-
"bits": 32,
|
83 |
-
"data_type": "bfloat",
|
84 |
-
"group_size": null,
|
85 |
-
"sym": null
|
86 |
-
},
|
87 |
-
"model.layers.12.mlp.gate": {
|
88 |
-
"bits": 32,
|
89 |
-
"data_type": "bfloat",
|
90 |
-
"group_size": null,
|
91 |
-
"sym": null
|
92 |
-
},
|
93 |
-
"model.layers.12.mlp.shared_expert_gate": {
|
94 |
-
"bits": 32,
|
95 |
-
"data_type": "bfloat",
|
96 |
-
"group_size": null,
|
97 |
-
"sym": null
|
98 |
-
},
|
99 |
-
"model.layers.13.mlp.gate": {
|
100 |
-
"bits": 32,
|
101 |
-
"data_type": "bfloat",
|
102 |
-
"group_size": null,
|
103 |
-
"sym": null
|
104 |
-
},
|
105 |
-
"model.layers.13.mlp.shared_expert_gate": {
|
106 |
-
"bits": 32,
|
107 |
-
"data_type": "bfloat",
|
108 |
-
"group_size": null,
|
109 |
-
"sym": null
|
110 |
-
},
|
111 |
-
"model.layers.14.mlp.gate": {
|
112 |
-
"bits": 32,
|
113 |
-
"data_type": "bfloat",
|
114 |
-
"group_size": null,
|
115 |
-
"sym": null
|
116 |
-
},
|
117 |
-
"model.layers.14.mlp.shared_expert_gate": {
|
118 |
-
"bits": 32,
|
119 |
-
"data_type": "bfloat",
|
120 |
-
"group_size": null,
|
121 |
-
"sym": null
|
122 |
-
},
|
123 |
-
"model.layers.15.mlp.gate": {
|
124 |
-
"bits": 32,
|
125 |
-
"data_type": "bfloat",
|
126 |
-
"group_size": null,
|
127 |
-
"sym": null
|
128 |
-
},
|
129 |
-
"model.layers.15.mlp.shared_expert_gate": {
|
130 |
-
"bits": 32,
|
131 |
-
"data_type": "bfloat",
|
132 |
-
"group_size": null,
|
133 |
-
"sym": null
|
134 |
-
},
|
135 |
-
"model.layers.16.mlp.gate": {
|
136 |
-
"bits": 32,
|
137 |
-
"data_type": "bfloat",
|
138 |
-
"group_size": null,
|
139 |
-
"sym": null
|
140 |
-
},
|
141 |
-
"model.layers.16.mlp.shared_expert_gate": {
|
142 |
-
"bits": 32,
|
143 |
-
"data_type": "bfloat",
|
144 |
-
"group_size": null,
|
145 |
-
"sym": null
|
146 |
-
},
|
147 |
-
"model.layers.17.mlp.gate": {
|
148 |
-
"bits": 32,
|
149 |
-
"data_type": "bfloat",
|
150 |
-
"group_size": null,
|
151 |
-
"sym": null
|
152 |
-
},
|
153 |
-
"model.layers.17.mlp.shared_expert_gate": {
|
154 |
-
"bits": 32,
|
155 |
-
"data_type": "bfloat",
|
156 |
-
"group_size": null,
|
157 |
-
"sym": null
|
158 |
-
},
|
159 |
-
"model.layers.18.mlp.gate": {
|
160 |
-
"bits": 32,
|
161 |
-
"data_type": "bfloat",
|
162 |
-
"group_size": null,
|
163 |
-
"sym": null
|
164 |
-
},
|
165 |
-
"model.layers.18.mlp.shared_expert_gate": {
|
166 |
-
"bits": 32,
|
167 |
-
"data_type": "bfloat",
|
168 |
-
"group_size": null,
|
169 |
-
"sym": null
|
170 |
-
},
|
171 |
-
"model.layers.19.mlp.gate": {
|
172 |
-
"bits": 32,
|
173 |
-
"data_type": "bfloat",
|
174 |
-
"group_size": null,
|
175 |
-
"sym": null
|
176 |
-
},
|
177 |
-
"model.layers.19.mlp.shared_expert_gate": {
|
178 |
-
"bits": 32,
|
179 |
-
"data_type": "bfloat",
|
180 |
-
"group_size": null,
|
181 |
-
"sym": null
|
182 |
-
},
|
183 |
-
"model.layers.2.mlp.gate": {
|
184 |
-
"bits": 32,
|
185 |
-
"data_type": "bfloat",
|
186 |
-
"group_size": null,
|
187 |
-
"sym": null
|
188 |
-
},
|
189 |
-
"model.layers.2.mlp.shared_expert_gate": {
|
190 |
-
"bits": 32,
|
191 |
-
"data_type": "bfloat",
|
192 |
-
"group_size": null,
|
193 |
-
"sym": null
|
194 |
-
},
|
195 |
-
"model.layers.20.mlp.gate": {
|
196 |
-
"bits": 32,
|
197 |
-
"data_type": "bfloat",
|
198 |
-
"group_size": null,
|
199 |
-
"sym": null
|
200 |
-
},
|
201 |
-
"model.layers.20.mlp.shared_expert_gate": {
|
202 |
-
"bits": 32,
|
203 |
-
"data_type": "bfloat",
|
204 |
-
"group_size": null,
|
205 |
-
"sym": null
|
206 |
-
},
|
207 |
-
"model.layers.21.mlp.gate": {
|
208 |
-
"bits": 32,
|
209 |
-
"data_type": "bfloat",
|
210 |
-
"group_size": null,
|
211 |
-
"sym": null
|
212 |
-
},
|
213 |
-
"model.layers.21.mlp.shared_expert_gate": {
|
214 |
-
"bits": 32,
|
215 |
-
"data_type": "bfloat",
|
216 |
-
"group_size": null,
|
217 |
-
"sym": null
|
218 |
-
},
|
219 |
-
"model.layers.22.mlp.gate": {
|
220 |
-
"bits": 32,
|
221 |
-
"data_type": "bfloat",
|
222 |
-
"group_size": null,
|
223 |
-
"sym": null
|
224 |
-
},
|
225 |
-
"model.layers.22.mlp.shared_expert_gate": {
|
226 |
-
"bits": 32,
|
227 |
-
"data_type": "bfloat",
|
228 |
-
"group_size": null,
|
229 |
-
"sym": null
|
230 |
-
},
|
231 |
-
"model.layers.23.mlp.gate": {
|
232 |
-
"bits": 32,
|
233 |
-
"data_type": "bfloat",
|
234 |
-
"group_size": null,
|
235 |
-
"sym": null
|
236 |
-
},
|
237 |
-
"model.layers.23.mlp.shared_expert_gate": {
|
238 |
-
"bits": 32,
|
239 |
-
"data_type": "bfloat",
|
240 |
-
"group_size": null,
|
241 |
-
"sym": null
|
242 |
-
},
|
243 |
-
"model.layers.24.mlp.gate": {
|
244 |
-
"bits": 32,
|
245 |
-
"data_type": "bfloat",
|
246 |
-
"group_size": null,
|
247 |
-
"sym": null
|
248 |
-
},
|
249 |
-
"model.layers.24.mlp.shared_expert_gate": {
|
250 |
-
"bits": 32,
|
251 |
-
"data_type": "bfloat",
|
252 |
-
"group_size": null,
|
253 |
-
"sym": null
|
254 |
-
},
|
255 |
-
"model.layers.25.mlp.gate": {
|
256 |
-
"bits": 32,
|
257 |
-
"data_type": "bfloat",
|
258 |
-
"group_size": null,
|
259 |
-
"sym": null
|
260 |
-
},
|
261 |
-
"model.layers.25.mlp.shared_expert_gate": {
|
262 |
-
"bits": 32,
|
263 |
-
"data_type": "bfloat",
|
264 |
-
"group_size": null,
|
265 |
-
"sym": null
|
266 |
-
},
|
267 |
-
"model.layers.26.mlp.gate": {
|
268 |
-
"bits": 32,
|
269 |
-
"data_type": "bfloat",
|
270 |
-
"group_size": null,
|
271 |
-
"sym": null
|
272 |
-
},
|
273 |
-
"model.layers.26.mlp.shared_expert_gate": {
|
274 |
-
"bits": 32,
|
275 |
-
"data_type": "bfloat",
|
276 |
-
"group_size": null,
|
277 |
-
"sym": null
|
278 |
-
},
|
279 |
-
"model.layers.27.mlp.gate": {
|
280 |
-
"bits": 32,
|
281 |
-
"data_type": "bfloat",
|
282 |
-
"group_size": null,
|
283 |
-
"sym": null
|
284 |
-
},
|
285 |
-
"model.layers.27.mlp.shared_expert_gate": {
|
286 |
-
"bits": 32,
|
287 |
-
"data_type": "bfloat",
|
288 |
-
"group_size": null,
|
289 |
-
"sym": null
|
290 |
-
},
|
291 |
-
"model.layers.3.mlp.gate": {
|
292 |
-
"bits": 32,
|
293 |
-
"data_type": "bfloat",
|
294 |
-
"group_size": null,
|
295 |
-
"sym": null
|
296 |
-
},
|
297 |
-
"model.layers.3.mlp.shared_expert_gate": {
|
298 |
-
"bits": 32,
|
299 |
-
"data_type": "bfloat",
|
300 |
-
"group_size": null,
|
301 |
-
"sym": null
|
302 |
-
},
|
303 |
-
"model.layers.4.mlp.gate": {
|
304 |
-
"bits": 32,
|
305 |
-
"data_type": "bfloat",
|
306 |
-
"group_size": null,
|
307 |
-
"sym": null
|
308 |
-
},
|
309 |
-
"model.layers.4.mlp.shared_expert_gate": {
|
310 |
-
"bits": 32,
|
311 |
-
"data_type": "bfloat",
|
312 |
-
"group_size": null,
|
313 |
-
"sym": null
|
314 |
-
},
|
315 |
-
"model.layers.5.mlp.gate": {
|
316 |
-
"bits": 32,
|
317 |
-
"data_type": "bfloat",
|
318 |
-
"group_size": null,
|
319 |
-
"sym": null
|
320 |
-
},
|
321 |
-
"model.layers.5.mlp.shared_expert_gate": {
|
322 |
-
"bits": 32,
|
323 |
-
"data_type": "bfloat",
|
324 |
-
"group_size": null,
|
325 |
-
"sym": null
|
326 |
-
},
|
327 |
-
"model.layers.6.mlp.gate": {
|
328 |
-
"bits": 32,
|
329 |
-
"data_type": "bfloat",
|
330 |
-
"group_size": null,
|
331 |
-
"sym": null
|
332 |
-
},
|
333 |
-
"model.layers.6.mlp.shared_expert_gate": {
|
334 |
-
"bits": 32,
|
335 |
-
"data_type": "bfloat",
|
336 |
-
"group_size": null,
|
337 |
-
"sym": null
|
338 |
-
},
|
339 |
-
"model.layers.7.mlp.gate": {
|
340 |
-
"bits": 32,
|
341 |
-
"data_type": "bfloat",
|
342 |
-
"group_size": null,
|
343 |
-
"sym": null
|
344 |
-
},
|
345 |
-
"model.layers.7.mlp.shared_expert_gate": {
|
346 |
-
"bits": 32,
|
347 |
-
"data_type": "bfloat",
|
348 |
-
"group_size": null,
|
349 |
-
"sym": null
|
350 |
-
},
|
351 |
-
"model.layers.8.mlp.gate": {
|
352 |
-
"bits": 32,
|
353 |
-
"data_type": "bfloat",
|
354 |
-
"group_size": null,
|
355 |
-
"sym": null
|
356 |
-
},
|
357 |
-
"model.layers.8.mlp.shared_expert_gate": {
|
358 |
-
"bits": 32,
|
359 |
-
"data_type": "bfloat",
|
360 |
-
"group_size": null,
|
361 |
-
"sym": null
|
362 |
-
},
|
363 |
-
"model.layers.9.mlp.gate": {
|
364 |
-
"bits": 32,
|
365 |
-
"data_type": "bfloat",
|
366 |
-
"group_size": null,
|
367 |
-
"sym": null
|
368 |
-
},
|
369 |
-
"model.layers.9.mlp.shared_expert_gate": {
|
370 |
-
"bits": 32,
|
371 |
-
"data_type": "bfloat",
|
372 |
-
"group_size": null,
|
373 |
-
"sym": null
|
374 |
-
}
|
375 |
-
},
|
376 |
"gradient_accumulate_steps": 1,
|
377 |
"group_size": 128,
|
378 |
"iters": 1000,
|
379 |
"low_gpu_mem_usage": false,
|
380 |
"lr": 0.001,
|
381 |
"minmax_lr": 0.001,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
"nsamples": 512,
|
383 |
-
"
|
|
|
384 |
"scale_dtype": "torch.float16",
|
385 |
"seqlen": 2048,
|
386 |
-
"sym":
|
387 |
-
"train_bs": 8
|
|
|
388 |
},
|
389 |
"rms_norm_eps": 1e-06,
|
390 |
"rope_theta": 1000000.0,
|
391 |
"router_aux_loss_coef": 0.001,
|
392 |
"shared_expert_intermediate_size": 20480,
|
393 |
-
"sliding_window":
|
394 |
"tie_word_embeddings": false,
|
395 |
-
"torch_dtype": "
|
396 |
-
"transformers_version": "4.
|
397 |
"use_cache": true,
|
398 |
"use_sliding_window": false,
|
399 |
"vocab_size": 151936
|
|
|
25 |
"output_router_logits": false,
|
26 |
"quantization_config": {
|
27 |
"amp": true,
|
28 |
+
"autoround_version": "0.3.1.dev",
|
|
|
29 |
"bits": 4,
|
30 |
+
"damp_percent": 0.01,
|
31 |
"data_type": "int",
|
32 |
+
"desc_act": false,
|
33 |
"enable_minmax_tuning": true,
|
34 |
+
"enable_norm_bias_tuning": false,
|
35 |
"enable_quanted_input": true,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
"gradient_accumulate_steps": 1,
|
37 |
"group_size": 128,
|
38 |
"iters": 1000,
|
39 |
"low_gpu_mem_usage": false,
|
40 |
"lr": 0.001,
|
41 |
"minmax_lr": 0.001,
|
42 |
+
"modules_in_block_to_quantize": [
|
43 |
+
[
|
44 |
+
"self_attn.q_proj",
|
45 |
+
"self_attn.k_proj",
|
46 |
+
"self_attn.v_proj",
|
47 |
+
"self_attn.o_proj",
|
48 |
+
"mlp.gate",
|
49 |
+
"mlp.experts.0.gate_proj",
|
50 |
+
"mlp.experts.0.up_proj",
|
51 |
+
"mlp.experts.0.down_proj",
|
52 |
+
"mlp.experts.1.gate_proj",
|
53 |
+
"mlp.experts.1.up_proj",
|
54 |
+
"mlp.experts.1.down_proj",
|
55 |
+
"mlp.experts.2.gate_proj",
|
56 |
+
"mlp.experts.2.up_proj",
|
57 |
+
"mlp.experts.2.down_proj",
|
58 |
+
"mlp.experts.3.gate_proj",
|
59 |
+
"mlp.experts.3.up_proj",
|
60 |
+
"mlp.experts.3.down_proj",
|
61 |
+
"mlp.experts.4.gate_proj",
|
62 |
+
"mlp.experts.4.up_proj",
|
63 |
+
"mlp.experts.4.down_proj",
|
64 |
+
"mlp.experts.5.gate_proj",
|
65 |
+
"mlp.experts.5.up_proj",
|
66 |
+
"mlp.experts.5.down_proj",
|
67 |
+
"mlp.experts.6.gate_proj",
|
68 |
+
"mlp.experts.6.up_proj",
|
69 |
+
"mlp.experts.6.down_proj",
|
70 |
+
"mlp.experts.7.gate_proj",
|
71 |
+
"mlp.experts.7.up_proj",
|
72 |
+
"mlp.experts.7.down_proj",
|
73 |
+
"mlp.experts.8.gate_proj",
|
74 |
+
"mlp.experts.8.up_proj",
|
75 |
+
"mlp.experts.8.down_proj",
|
76 |
+
"mlp.experts.9.gate_proj",
|
77 |
+
"mlp.experts.9.up_proj",
|
78 |
+
"mlp.experts.9.down_proj",
|
79 |
+
"mlp.experts.10.gate_proj",
|
80 |
+
"mlp.experts.10.up_proj",
|
81 |
+
"mlp.experts.10.down_proj",
|
82 |
+
"mlp.experts.11.gate_proj",
|
83 |
+
"mlp.experts.11.up_proj",
|
84 |
+
"mlp.experts.11.down_proj",
|
85 |
+
"mlp.experts.12.gate_proj",
|
86 |
+
"mlp.experts.12.up_proj",
|
87 |
+
"mlp.experts.12.down_proj",
|
88 |
+
"mlp.experts.13.gate_proj",
|
89 |
+
"mlp.experts.13.up_proj",
|
90 |
+
"mlp.experts.13.down_proj",
|
91 |
+
"mlp.experts.14.gate_proj",
|
92 |
+
"mlp.experts.14.up_proj",
|
93 |
+
"mlp.experts.14.down_proj",
|
94 |
+
"mlp.experts.15.gate_proj",
|
95 |
+
"mlp.experts.15.up_proj",
|
96 |
+
"mlp.experts.15.down_proj",
|
97 |
+
"mlp.experts.16.gate_proj",
|
98 |
+
"mlp.experts.16.up_proj",
|
99 |
+
"mlp.experts.16.down_proj",
|
100 |
+
"mlp.experts.17.gate_proj",
|
101 |
+
"mlp.experts.17.up_proj",
|
102 |
+
"mlp.experts.17.down_proj",
|
103 |
+
"mlp.experts.18.gate_proj",
|
104 |
+
"mlp.experts.18.up_proj",
|
105 |
+
"mlp.experts.18.down_proj",
|
106 |
+
"mlp.experts.19.gate_proj",
|
107 |
+
"mlp.experts.19.up_proj",
|
108 |
+
"mlp.experts.19.down_proj",
|
109 |
+
"mlp.experts.20.gate_proj",
|
110 |
+
"mlp.experts.20.up_proj",
|
111 |
+
"mlp.experts.20.down_proj",
|
112 |
+
"mlp.experts.21.gate_proj",
|
113 |
+
"mlp.experts.21.up_proj",
|
114 |
+
"mlp.experts.21.down_proj",
|
115 |
+
"mlp.experts.22.gate_proj",
|
116 |
+
"mlp.experts.22.up_proj",
|
117 |
+
"mlp.experts.22.down_proj",
|
118 |
+
"mlp.experts.23.gate_proj",
|
119 |
+
"mlp.experts.23.up_proj",
|
120 |
+
"mlp.experts.23.down_proj",
|
121 |
+
"mlp.experts.24.gate_proj",
|
122 |
+
"mlp.experts.24.up_proj",
|
123 |
+
"mlp.experts.24.down_proj",
|
124 |
+
"mlp.experts.25.gate_proj",
|
125 |
+
"mlp.experts.25.up_proj",
|
126 |
+
"mlp.experts.25.down_proj",
|
127 |
+
"mlp.experts.26.gate_proj",
|
128 |
+
"mlp.experts.26.up_proj",
|
129 |
+
"mlp.experts.26.down_proj",
|
130 |
+
"mlp.experts.27.gate_proj",
|
131 |
+
"mlp.experts.27.up_proj",
|
132 |
+
"mlp.experts.27.down_proj",
|
133 |
+
"mlp.experts.28.gate_proj",
|
134 |
+
"mlp.experts.28.up_proj",
|
135 |
+
"mlp.experts.28.down_proj",
|
136 |
+
"mlp.experts.29.gate_proj",
|
137 |
+
"mlp.experts.29.up_proj",
|
138 |
+
"mlp.experts.29.down_proj",
|
139 |
+
"mlp.experts.30.gate_proj",
|
140 |
+
"mlp.experts.30.up_proj",
|
141 |
+
"mlp.experts.30.down_proj",
|
142 |
+
"mlp.experts.31.gate_proj",
|
143 |
+
"mlp.experts.31.up_proj",
|
144 |
+
"mlp.experts.31.down_proj",
|
145 |
+
"mlp.experts.32.gate_proj",
|
146 |
+
"mlp.experts.32.up_proj",
|
147 |
+
"mlp.experts.32.down_proj",
|
148 |
+
"mlp.experts.33.gate_proj",
|
149 |
+
"mlp.experts.33.up_proj",
|
150 |
+
"mlp.experts.33.down_proj",
|
151 |
+
"mlp.experts.34.gate_proj",
|
152 |
+
"mlp.experts.34.up_proj",
|
153 |
+
"mlp.experts.34.down_proj",
|
154 |
+
"mlp.experts.35.gate_proj",
|
155 |
+
"mlp.experts.35.up_proj",
|
156 |
+
"mlp.experts.35.down_proj",
|
157 |
+
"mlp.experts.36.gate_proj",
|
158 |
+
"mlp.experts.36.up_proj",
|
159 |
+
"mlp.experts.36.down_proj",
|
160 |
+
"mlp.experts.37.gate_proj",
|
161 |
+
"mlp.experts.37.up_proj",
|
162 |
+
"mlp.experts.37.down_proj",
|
163 |
+
"mlp.experts.38.gate_proj",
|
164 |
+
"mlp.experts.38.up_proj",
|
165 |
+
"mlp.experts.38.down_proj",
|
166 |
+
"mlp.experts.39.gate_proj",
|
167 |
+
"mlp.experts.39.up_proj",
|
168 |
+
"mlp.experts.39.down_proj",
|
169 |
+
"mlp.experts.40.gate_proj",
|
170 |
+
"mlp.experts.40.up_proj",
|
171 |
+
"mlp.experts.40.down_proj",
|
172 |
+
"mlp.experts.41.gate_proj",
|
173 |
+
"mlp.experts.41.up_proj",
|
174 |
+
"mlp.experts.41.down_proj",
|
175 |
+
"mlp.experts.42.gate_proj",
|
176 |
+
"mlp.experts.42.up_proj",
|
177 |
+
"mlp.experts.42.down_proj",
|
178 |
+
"mlp.experts.43.gate_proj",
|
179 |
+
"mlp.experts.43.up_proj",
|
180 |
+
"mlp.experts.43.down_proj",
|
181 |
+
"mlp.experts.44.gate_proj",
|
182 |
+
"mlp.experts.44.up_proj",
|
183 |
+
"mlp.experts.44.down_proj",
|
184 |
+
"mlp.experts.45.gate_proj",
|
185 |
+
"mlp.experts.45.up_proj",
|
186 |
+
"mlp.experts.45.down_proj",
|
187 |
+
"mlp.experts.46.gate_proj",
|
188 |
+
"mlp.experts.46.up_proj",
|
189 |
+
"mlp.experts.46.down_proj",
|
190 |
+
"mlp.experts.47.gate_proj",
|
191 |
+
"mlp.experts.47.up_proj",
|
192 |
+
"mlp.experts.47.down_proj",
|
193 |
+
"mlp.experts.48.gate_proj",
|
194 |
+
"mlp.experts.48.up_proj",
|
195 |
+
"mlp.experts.48.down_proj",
|
196 |
+
"mlp.experts.49.gate_proj",
|
197 |
+
"mlp.experts.49.up_proj",
|
198 |
+
"mlp.experts.49.down_proj",
|
199 |
+
"mlp.experts.50.gate_proj",
|
200 |
+
"mlp.experts.50.up_proj",
|
201 |
+
"mlp.experts.50.down_proj",
|
202 |
+
"mlp.experts.51.gate_proj",
|
203 |
+
"mlp.experts.51.up_proj",
|
204 |
+
"mlp.experts.51.down_proj",
|
205 |
+
"mlp.experts.52.gate_proj",
|
206 |
+
"mlp.experts.52.up_proj",
|
207 |
+
"mlp.experts.52.down_proj",
|
208 |
+
"mlp.experts.53.gate_proj",
|
209 |
+
"mlp.experts.53.up_proj",
|
210 |
+
"mlp.experts.53.down_proj",
|
211 |
+
"mlp.experts.54.gate_proj",
|
212 |
+
"mlp.experts.54.up_proj",
|
213 |
+
"mlp.experts.54.down_proj",
|
214 |
+
"mlp.experts.55.gate_proj",
|
215 |
+
"mlp.experts.55.up_proj",
|
216 |
+
"mlp.experts.55.down_proj",
|
217 |
+
"mlp.experts.56.gate_proj",
|
218 |
+
"mlp.experts.56.up_proj",
|
219 |
+
"mlp.experts.56.down_proj",
|
220 |
+
"mlp.experts.57.gate_proj",
|
221 |
+
"mlp.experts.57.up_proj",
|
222 |
+
"mlp.experts.57.down_proj",
|
223 |
+
"mlp.experts.58.gate_proj",
|
224 |
+
"mlp.experts.58.up_proj",
|
225 |
+
"mlp.experts.58.down_proj",
|
226 |
+
"mlp.experts.59.gate_proj",
|
227 |
+
"mlp.experts.59.up_proj",
|
228 |
+
"mlp.experts.59.down_proj",
|
229 |
+
"mlp.experts.60.gate_proj",
|
230 |
+
"mlp.experts.60.up_proj",
|
231 |
+
"mlp.experts.60.down_proj",
|
232 |
+
"mlp.experts.61.gate_proj",
|
233 |
+
"mlp.experts.61.up_proj",
|
234 |
+
"mlp.experts.61.down_proj",
|
235 |
+
"mlp.experts.62.gate_proj",
|
236 |
+
"mlp.experts.62.up_proj",
|
237 |
+
"mlp.experts.62.down_proj",
|
238 |
+
"mlp.experts.63.gate_proj",
|
239 |
+
"mlp.experts.63.up_proj",
|
240 |
+
"mlp.experts.63.down_proj",
|
241 |
+
"mlp.shared_expert.gate_proj",
|
242 |
+
"mlp.shared_expert.up_proj",
|
243 |
+
"mlp.shared_expert.down_proj"
|
244 |
+
]
|
245 |
+
],
|
246 |
"nsamples": 512,
|
247 |
+
"quant_block_list": null,
|
248 |
+
"quant_method": "gptq",
|
249 |
"scale_dtype": "torch.float16",
|
250 |
"seqlen": 2048,
|
251 |
+
"sym": true,
|
252 |
+
"train_bs": 8,
|
253 |
+
"true_sequential": false
|
254 |
},
|
255 |
"rms_norm_eps": 1e-06,
|
256 |
"rope_theta": 1000000.0,
|
257 |
"router_aux_loss_coef": 0.001,
|
258 |
"shared_expert_intermediate_size": 20480,
|
259 |
+
"sliding_window": null,
|
260 |
"tie_word_embeddings": false,
|
261 |
+
"torch_dtype": "float16",
|
262 |
+
"transformers_version": "4.44.2",
|
263 |
"use_cache": true,
|
264 |
"use_sliding_window": false,
|
265 |
"vocab_size": 151936
|
generation_config.json
CHANGED
@@ -10,5 +10,5 @@
|
|
10 |
"temperature": 0.7,
|
11 |
"top_k": 20,
|
12 |
"top_p": 0.8,
|
13 |
-
"transformers_version": "4.
|
14 |
}
|
|
|
10 |
"temperature": 0.7,
|
11 |
"top_k": 20,
|
12 |
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.44.2"
|
14 |
}
|
model-00001-of-00007.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:167fc297862ecd2e0033de4c717668a83a6904b31c14025c6d96298f08706e4b
|
3 |
-
size 4999673648
|
|
|
|
|
|
|
|
model-00002-of-00007.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:2e484a47e41edba04660cf6862d0ee5c2cb1d8614968c35b5ec7aa1cbe7681b3
|
3 |
-
size 4996756752
|
|
|
|
|
|
|
|
model-00003-of-00007.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:77db3c5e4a435e4f834011974388b3f8d177e83537c5acd5764d06db3c592462
|
3 |
-
size 4996759400
|
|
|
|
|
|
|
|
model-00005-of-00007.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c825fa9b74f5e7f55362b085315c8db3c82e4679e0faae23c07eb1ffff8eed3c
|
3 |
-
size 5000290584
|
|
|
|
|
|
|
|
model-00006-of-00007.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:79105d05c0ea1507176ced998d5598cb3b4f4a7678abea09d87cd87e682120b6
|
3 |
-
size 4996760576
|
|
|
|
|
|
|
|
model-00007-of-00007.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c1d6e7a53c719cb3c8938fbaad0e638d1f5149a40bcc3103539004ef994eb072
|
3 |
-
size 1538228952
|
|
|
|
|
|
|
|
model-00004-of-00007.safetensors → model.safetensors
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d15f21e20a022b32b6099710f772e88b8586b50af88871fb44e2422664109fa2
|
3 |
+
size 31475221720
|
model.safetensors.index.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
quantization_config.json
DELETED
@@ -1,360 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bits": 4,
|
3 |
-
"group_size": 128,
|
4 |
-
"sym": false,
|
5 |
-
"data_type": "int",
|
6 |
-
"enable_quanted_input": true,
|
7 |
-
"enable_minmax_tuning": true,
|
8 |
-
"seqlen": 2048,
|
9 |
-
"train_bs": 8,
|
10 |
-
"scale_dtype": "torch.float16",
|
11 |
-
"lr": 0.001,
|
12 |
-
"minmax_lr": 0.001,
|
13 |
-
"gradient_accumulate_steps": 1,
|
14 |
-
"iters": 1000,
|
15 |
-
"amp": true,
|
16 |
-
"nsamples": 512,
|
17 |
-
"low_gpu_mem_usage": false,
|
18 |
-
"dataset": "NeelNanda/pile-10k",
|
19 |
-
"autoround_version": "0.3.0.dev",
|
20 |
-
"quant_method": "intel/auto-round",
|
21 |
-
"backend": "auto_round:exllamav2",
|
22 |
-
"extra_config": {
|
23 |
-
"model.layers.0.mlp.shared_expert_gate": {
|
24 |
-
"data_type": "bfloat",
|
25 |
-
"bits": 32,
|
26 |
-
"group_size": null,
|
27 |
-
"sym": null
|
28 |
-
},
|
29 |
-
"model.layers.1.mlp.shared_expert_gate": {
|
30 |
-
"data_type": "bfloat",
|
31 |
-
"bits": 32,
|
32 |
-
"group_size": null,
|
33 |
-
"sym": null
|
34 |
-
},
|
35 |
-
"model.layers.2.mlp.shared_expert_gate": {
|
36 |
-
"data_type": "bfloat",
|
37 |
-
"bits": 32,
|
38 |
-
"group_size": null,
|
39 |
-
"sym": null
|
40 |
-
},
|
41 |
-
"model.layers.3.mlp.shared_expert_gate": {
|
42 |
-
"data_type": "bfloat",
|
43 |
-
"bits": 32,
|
44 |
-
"group_size": null,
|
45 |
-
"sym": null
|
46 |
-
},
|
47 |
-
"model.layers.4.mlp.shared_expert_gate": {
|
48 |
-
"data_type": "bfloat",
|
49 |
-
"bits": 32,
|
50 |
-
"group_size": null,
|
51 |
-
"sym": null
|
52 |
-
},
|
53 |
-
"model.layers.5.mlp.shared_expert_gate": {
|
54 |
-
"data_type": "bfloat",
|
55 |
-
"bits": 32,
|
56 |
-
"group_size": null,
|
57 |
-
"sym": null
|
58 |
-
},
|
59 |
-
"model.layers.6.mlp.shared_expert_gate": {
|
60 |
-
"data_type": "bfloat",
|
61 |
-
"bits": 32,
|
62 |
-
"group_size": null,
|
63 |
-
"sym": null
|
64 |
-
},
|
65 |
-
"model.layers.7.mlp.shared_expert_gate": {
|
66 |
-
"data_type": "bfloat",
|
67 |
-
"bits": 32,
|
68 |
-
"group_size": null,
|
69 |
-
"sym": null
|
70 |
-
},
|
71 |
-
"model.layers.8.mlp.shared_expert_gate": {
|
72 |
-
"data_type": "bfloat",
|
73 |
-
"bits": 32,
|
74 |
-
"group_size": null,
|
75 |
-
"sym": null
|
76 |
-
},
|
77 |
-
"model.layers.9.mlp.shared_expert_gate": {
|
78 |
-
"data_type": "bfloat",
|
79 |
-
"bits": 32,
|
80 |
-
"group_size": null,
|
81 |
-
"sym": null
|
82 |
-
},
|
83 |
-
"model.layers.10.mlp.shared_expert_gate": {
|
84 |
-
"data_type": "bfloat",
|
85 |
-
"bits": 32,
|
86 |
-
"group_size": null,
|
87 |
-
"sym": null
|
88 |
-
},
|
89 |
-
"model.layers.11.mlp.shared_expert_gate": {
|
90 |
-
"data_type": "bfloat",
|
91 |
-
"bits": 32,
|
92 |
-
"group_size": null,
|
93 |
-
"sym": null
|
94 |
-
},
|
95 |
-
"model.layers.12.mlp.shared_expert_gate": {
|
96 |
-
"data_type": "bfloat",
|
97 |
-
"bits": 32,
|
98 |
-
"group_size": null,
|
99 |
-
"sym": null
|
100 |
-
},
|
101 |
-
"model.layers.13.mlp.shared_expert_gate": {
|
102 |
-
"data_type": "bfloat",
|
103 |
-
"bits": 32,
|
104 |
-
"group_size": null,
|
105 |
-
"sym": null
|
106 |
-
},
|
107 |
-
"model.layers.14.mlp.shared_expert_gate": {
|
108 |
-
"data_type": "bfloat",
|
109 |
-
"bits": 32,
|
110 |
-
"group_size": null,
|
111 |
-
"sym": null
|
112 |
-
},
|
113 |
-
"model.layers.15.mlp.shared_expert_gate": {
|
114 |
-
"data_type": "bfloat",
|
115 |
-
"bits": 32,
|
116 |
-
"group_size": null,
|
117 |
-
"sym": null
|
118 |
-
},
|
119 |
-
"model.layers.16.mlp.shared_expert_gate": {
|
120 |
-
"data_type": "bfloat",
|
121 |
-
"bits": 32,
|
122 |
-
"group_size": null,
|
123 |
-
"sym": null
|
124 |
-
},
|
125 |
-
"model.layers.17.mlp.shared_expert_gate": {
|
126 |
-
"data_type": "bfloat",
|
127 |
-
"bits": 32,
|
128 |
-
"group_size": null,
|
129 |
-
"sym": null
|
130 |
-
},
|
131 |
-
"model.layers.18.mlp.shared_expert_gate": {
|
132 |
-
"data_type": "bfloat",
|
133 |
-
"bits": 32,
|
134 |
-
"group_size": null,
|
135 |
-
"sym": null
|
136 |
-
},
|
137 |
-
"model.layers.19.mlp.shared_expert_gate": {
|
138 |
-
"data_type": "bfloat",
|
139 |
-
"bits": 32,
|
140 |
-
"group_size": null,
|
141 |
-
"sym": null
|
142 |
-
},
|
143 |
-
"model.layers.20.mlp.shared_expert_gate": {
|
144 |
-
"data_type": "bfloat",
|
145 |
-
"bits": 32,
|
146 |
-
"group_size": null,
|
147 |
-
"sym": null
|
148 |
-
},
|
149 |
-
"model.layers.21.mlp.shared_expert_gate": {
|
150 |
-
"data_type": "bfloat",
|
151 |
-
"bits": 32,
|
152 |
-
"group_size": null,
|
153 |
-
"sym": null
|
154 |
-
},
|
155 |
-
"model.layers.22.mlp.shared_expert_gate": {
|
156 |
-
"data_type": "bfloat",
|
157 |
-
"bits": 32,
|
158 |
-
"group_size": null,
|
159 |
-
"sym": null
|
160 |
-
},
|
161 |
-
"model.layers.23.mlp.shared_expert_gate": {
|
162 |
-
"data_type": "bfloat",
|
163 |
-
"bits": 32,
|
164 |
-
"group_size": null,
|
165 |
-
"sym": null
|
166 |
-
},
|
167 |
-
"model.layers.24.mlp.shared_expert_gate": {
|
168 |
-
"data_type": "bfloat",
|
169 |
-
"bits": 32,
|
170 |
-
"group_size": null,
|
171 |
-
"sym": null
|
172 |
-
},
|
173 |
-
"model.layers.25.mlp.shared_expert_gate": {
|
174 |
-
"data_type": "bfloat",
|
175 |
-
"bits": 32,
|
176 |
-
"group_size": null,
|
177 |
-
"sym": null
|
178 |
-
},
|
179 |
-
"model.layers.26.mlp.shared_expert_gate": {
|
180 |
-
"data_type": "bfloat",
|
181 |
-
"bits": 32,
|
182 |
-
"group_size": null,
|
183 |
-
"sym": null
|
184 |
-
},
|
185 |
-
"model.layers.27.mlp.shared_expert_gate": {
|
186 |
-
"data_type": "bfloat",
|
187 |
-
"bits": 32,
|
188 |
-
"group_size": null,
|
189 |
-
"sym": null
|
190 |
-
},
|
191 |
-
"model.layers.0.mlp.gate": {
|
192 |
-
"data_type": "bfloat",
|
193 |
-
"bits": 32,
|
194 |
-
"group_size": null,
|
195 |
-
"sym": null
|
196 |
-
},
|
197 |
-
"model.layers.1.mlp.gate": {
|
198 |
-
"data_type": "bfloat",
|
199 |
-
"bits": 32,
|
200 |
-
"group_size": null,
|
201 |
-
"sym": null
|
202 |
-
},
|
203 |
-
"model.layers.2.mlp.gate": {
|
204 |
-
"data_type": "bfloat",
|
205 |
-
"bits": 32,
|
206 |
-
"group_size": null,
|
207 |
-
"sym": null
|
208 |
-
},
|
209 |
-
"model.layers.3.mlp.gate": {
|
210 |
-
"data_type": "bfloat",
|
211 |
-
"bits": 32,
|
212 |
-
"group_size": null,
|
213 |
-
"sym": null
|
214 |
-
},
|
215 |
-
"model.layers.4.mlp.gate": {
|
216 |
-
"data_type": "bfloat",
|
217 |
-
"bits": 32,
|
218 |
-
"group_size": null,
|
219 |
-
"sym": null
|
220 |
-
},
|
221 |
-
"model.layers.5.mlp.gate": {
|
222 |
-
"data_type": "bfloat",
|
223 |
-
"bits": 32,
|
224 |
-
"group_size": null,
|
225 |
-
"sym": null
|
226 |
-
},
|
227 |
-
"model.layers.6.mlp.gate": {
|
228 |
-
"data_type": "bfloat",
|
229 |
-
"bits": 32,
|
230 |
-
"group_size": null,
|
231 |
-
"sym": null
|
232 |
-
},
|
233 |
-
"model.layers.7.mlp.gate": {
|
234 |
-
"data_type": "bfloat",
|
235 |
-
"bits": 32,
|
236 |
-
"group_size": null,
|
237 |
-
"sym": null
|
238 |
-
},
|
239 |
-
"model.layers.8.mlp.gate": {
|
240 |
-
"data_type": "bfloat",
|
241 |
-
"bits": 32,
|
242 |
-
"group_size": null,
|
243 |
-
"sym": null
|
244 |
-
},
|
245 |
-
"model.layers.9.mlp.gate": {
|
246 |
-
"data_type": "bfloat",
|
247 |
-
"bits": 32,
|
248 |
-
"group_size": null,
|
249 |
-
"sym": null
|
250 |
-
},
|
251 |
-
"model.layers.10.mlp.gate": {
|
252 |
-
"data_type": "bfloat",
|
253 |
-
"bits": 32,
|
254 |
-
"group_size": null,
|
255 |
-
"sym": null
|
256 |
-
},
|
257 |
-
"model.layers.11.mlp.gate": {
|
258 |
-
"data_type": "bfloat",
|
259 |
-
"bits": 32,
|
260 |
-
"group_size": null,
|
261 |
-
"sym": null
|
262 |
-
},
|
263 |
-
"model.layers.12.mlp.gate": {
|
264 |
-
"data_type": "bfloat",
|
265 |
-
"bits": 32,
|
266 |
-
"group_size": null,
|
267 |
-
"sym": null
|
268 |
-
},
|
269 |
-
"model.layers.13.mlp.gate": {
|
270 |
-
"data_type": "bfloat",
|
271 |
-
"bits": 32,
|
272 |
-
"group_size": null,
|
273 |
-
"sym": null
|
274 |
-
},
|
275 |
-
"model.layers.14.mlp.gate": {
|
276 |
-
"data_type": "bfloat",
|
277 |
-
"bits": 32,
|
278 |
-
"group_size": null,
|
279 |
-
"sym": null
|
280 |
-
},
|
281 |
-
"model.layers.15.mlp.gate": {
|
282 |
-
"data_type": "bfloat",
|
283 |
-
"bits": 32,
|
284 |
-
"group_size": null,
|
285 |
-
"sym": null
|
286 |
-
},
|
287 |
-
"model.layers.16.mlp.gate": {
|
288 |
-
"data_type": "bfloat",
|
289 |
-
"bits": 32,
|
290 |
-
"group_size": null,
|
291 |
-
"sym": null
|
292 |
-
},
|
293 |
-
"model.layers.17.mlp.gate": {
|
294 |
-
"data_type": "bfloat",
|
295 |
-
"bits": 32,
|
296 |
-
"group_size": null,
|
297 |
-
"sym": null
|
298 |
-
},
|
299 |
-
"model.layers.18.mlp.gate": {
|
300 |
-
"data_type": "bfloat",
|
301 |
-
"bits": 32,
|
302 |
-
"group_size": null,
|
303 |
-
"sym": null
|
304 |
-
},
|
305 |
-
"model.layers.19.mlp.gate": {
|
306 |
-
"data_type": "bfloat",
|
307 |
-
"bits": 32,
|
308 |
-
"group_size": null,
|
309 |
-
"sym": null
|
310 |
-
},
|
311 |
-
"model.layers.20.mlp.gate": {
|
312 |
-
"data_type": "bfloat",
|
313 |
-
"bits": 32,
|
314 |
-
"group_size": null,
|
315 |
-
"sym": null
|
316 |
-
},
|
317 |
-
"model.layers.21.mlp.gate": {
|
318 |
-
"data_type": "bfloat",
|
319 |
-
"bits": 32,
|
320 |
-
"group_size": null,
|
321 |
-
"sym": null
|
322 |
-
},
|
323 |
-
"model.layers.22.mlp.gate": {
|
324 |
-
"data_type": "bfloat",
|
325 |
-
"bits": 32,
|
326 |
-
"group_size": null,
|
327 |
-
"sym": null
|
328 |
-
},
|
329 |
-
"model.layers.23.mlp.gate": {
|
330 |
-
"data_type": "bfloat",
|
331 |
-
"bits": 32,
|
332 |
-
"group_size": null,
|
333 |
-
"sym": null
|
334 |
-
},
|
335 |
-
"model.layers.24.mlp.gate": {
|
336 |
-
"data_type": "bfloat",
|
337 |
-
"bits": 32,
|
338 |
-
"group_size": null,
|
339 |
-
"sym": null
|
340 |
-
},
|
341 |
-
"model.layers.25.mlp.gate": {
|
342 |
-
"data_type": "bfloat",
|
343 |
-
"bits": 32,
|
344 |
-
"group_size": null,
|
345 |
-
"sym": null
|
346 |
-
},
|
347 |
-
"model.layers.26.mlp.gate": {
|
348 |
-
"data_type": "bfloat",
|
349 |
-
"bits": 32,
|
350 |
-
"group_size": null,
|
351 |
-
"sym": null
|
352 |
-
},
|
353 |
-
"model.layers.27.mlp.gate": {
|
354 |
-
"data_type": "bfloat",
|
355 |
-
"bits": 32,
|
356 |
-
"group_size": null,
|
357 |
-
"sym": null
|
358 |
-
}
|
359 |
-
}
|
360 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
quantize_config.json
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bits": 4,
|
3 |
+
"group_size": 128,
|
4 |
+
"sym": true,
|
5 |
+
"data_type": "int",
|
6 |
+
"enable_quanted_input": true,
|
7 |
+
"enable_minmax_tuning": true,
|
8 |
+
"seqlen": 2048,
|
9 |
+
"train_bs": 8,
|
10 |
+
"scale_dtype": "torch.float16",
|
11 |
+
"lr": 0.001,
|
12 |
+
"minmax_lr": 0.001,
|
13 |
+
"gradient_accumulate_steps": 1,
|
14 |
+
"iters": 1000,
|
15 |
+
"amp": true,
|
16 |
+
"nsamples": 512,
|
17 |
+
"low_gpu_mem_usage": false,
|
18 |
+
"quant_block_list": null,
|
19 |
+
"enable_norm_bias_tuning": false,
|
20 |
+
"autoround_version": "0.3.1.dev",
|
21 |
+
"quant_method": "gptq",
|
22 |
+
"desc_act": false,
|
23 |
+
"true_sequential": false,
|
24 |
+
"damp_percent": 0.01,
|
25 |
+
"modules_in_block_to_quantize": [
|
26 |
+
[
|
27 |
+
"self_attn.q_proj",
|
28 |
+
"self_attn.k_proj",
|
29 |
+
"self_attn.v_proj",
|
30 |
+
"self_attn.o_proj",
|
31 |
+
"mlp.gate",
|
32 |
+
"mlp.experts.0.gate_proj",
|
33 |
+
"mlp.experts.0.up_proj",
|
34 |
+
"mlp.experts.0.down_proj",
|
35 |
+
"mlp.experts.1.gate_proj",
|
36 |
+
"mlp.experts.1.up_proj",
|
37 |
+
"mlp.experts.1.down_proj",
|
38 |
+
"mlp.experts.2.gate_proj",
|
39 |
+
"mlp.experts.2.up_proj",
|
40 |
+
"mlp.experts.2.down_proj",
|
41 |
+
"mlp.experts.3.gate_proj",
|
42 |
+
"mlp.experts.3.up_proj",
|
43 |
+
"mlp.experts.3.down_proj",
|
44 |
+
"mlp.experts.4.gate_proj",
|
45 |
+
"mlp.experts.4.up_proj",
|
46 |
+
"mlp.experts.4.down_proj",
|
47 |
+
"mlp.experts.5.gate_proj",
|
48 |
+
"mlp.experts.5.up_proj",
|
49 |
+
"mlp.experts.5.down_proj",
|
50 |
+
"mlp.experts.6.gate_proj",
|
51 |
+
"mlp.experts.6.up_proj",
|
52 |
+
"mlp.experts.6.down_proj",
|
53 |
+
"mlp.experts.7.gate_proj",
|
54 |
+
"mlp.experts.7.up_proj",
|
55 |
+
"mlp.experts.7.down_proj",
|
56 |
+
"mlp.experts.8.gate_proj",
|
57 |
+
"mlp.experts.8.up_proj",
|
58 |
+
"mlp.experts.8.down_proj",
|
59 |
+
"mlp.experts.9.gate_proj",
|
60 |
+
"mlp.experts.9.up_proj",
|
61 |
+
"mlp.experts.9.down_proj",
|
62 |
+
"mlp.experts.10.gate_proj",
|
63 |
+
"mlp.experts.10.up_proj",
|
64 |
+
"mlp.experts.10.down_proj",
|
65 |
+
"mlp.experts.11.gate_proj",
|
66 |
+
"mlp.experts.11.up_proj",
|
67 |
+
"mlp.experts.11.down_proj",
|
68 |
+
"mlp.experts.12.gate_proj",
|
69 |
+
"mlp.experts.12.up_proj",
|
70 |
+
"mlp.experts.12.down_proj",
|
71 |
+
"mlp.experts.13.gate_proj",
|
72 |
+
"mlp.experts.13.up_proj",
|
73 |
+
"mlp.experts.13.down_proj",
|
74 |
+
"mlp.experts.14.gate_proj",
|
75 |
+
"mlp.experts.14.up_proj",
|
76 |
+
"mlp.experts.14.down_proj",
|
77 |
+
"mlp.experts.15.gate_proj",
|
78 |
+
"mlp.experts.15.up_proj",
|
79 |
+
"mlp.experts.15.down_proj",
|
80 |
+
"mlp.experts.16.gate_proj",
|
81 |
+
"mlp.experts.16.up_proj",
|
82 |
+
"mlp.experts.16.down_proj",
|
83 |
+
"mlp.experts.17.gate_proj",
|
84 |
+
"mlp.experts.17.up_proj",
|
85 |
+
"mlp.experts.17.down_proj",
|
86 |
+
"mlp.experts.18.gate_proj",
|
87 |
+
"mlp.experts.18.up_proj",
|
88 |
+
"mlp.experts.18.down_proj",
|
89 |
+
"mlp.experts.19.gate_proj",
|
90 |
+
"mlp.experts.19.up_proj",
|
91 |
+
"mlp.experts.19.down_proj",
|
92 |
+
"mlp.experts.20.gate_proj",
|
93 |
+
"mlp.experts.20.up_proj",
|
94 |
+
"mlp.experts.20.down_proj",
|
95 |
+
"mlp.experts.21.gate_proj",
|
96 |
+
"mlp.experts.21.up_proj",
|
97 |
+
"mlp.experts.21.down_proj",
|
98 |
+
"mlp.experts.22.gate_proj",
|
99 |
+
"mlp.experts.22.up_proj",
|
100 |
+
"mlp.experts.22.down_proj",
|
101 |
+
"mlp.experts.23.gate_proj",
|
102 |
+
"mlp.experts.23.up_proj",
|
103 |
+
"mlp.experts.23.down_proj",
|
104 |
+
"mlp.experts.24.gate_proj",
|
105 |
+
"mlp.experts.24.up_proj",
|
106 |
+
"mlp.experts.24.down_proj",
|
107 |
+
"mlp.experts.25.gate_proj",
|
108 |
+
"mlp.experts.25.up_proj",
|
109 |
+
"mlp.experts.25.down_proj",
|
110 |
+
"mlp.experts.26.gate_proj",
|
111 |
+
"mlp.experts.26.up_proj",
|
112 |
+
"mlp.experts.26.down_proj",
|
113 |
+
"mlp.experts.27.gate_proj",
|
114 |
+
"mlp.experts.27.up_proj",
|
115 |
+
"mlp.experts.27.down_proj",
|
116 |
+
"mlp.experts.28.gate_proj",
|
117 |
+
"mlp.experts.28.up_proj",
|
118 |
+
"mlp.experts.28.down_proj",
|
119 |
+
"mlp.experts.29.gate_proj",
|
120 |
+
"mlp.experts.29.up_proj",
|
121 |
+
"mlp.experts.29.down_proj",
|
122 |
+
"mlp.experts.30.gate_proj",
|
123 |
+
"mlp.experts.30.up_proj",
|
124 |
+
"mlp.experts.30.down_proj",
|
125 |
+
"mlp.experts.31.gate_proj",
|
126 |
+
"mlp.experts.31.up_proj",
|
127 |
+
"mlp.experts.31.down_proj",
|
128 |
+
"mlp.experts.32.gate_proj",
|
129 |
+
"mlp.experts.32.up_proj",
|
130 |
+
"mlp.experts.32.down_proj",
|
131 |
+
"mlp.experts.33.gate_proj",
|
132 |
+
"mlp.experts.33.up_proj",
|
133 |
+
"mlp.experts.33.down_proj",
|
134 |
+
"mlp.experts.34.gate_proj",
|
135 |
+
"mlp.experts.34.up_proj",
|
136 |
+
"mlp.experts.34.down_proj",
|
137 |
+
"mlp.experts.35.gate_proj",
|
138 |
+
"mlp.experts.35.up_proj",
|
139 |
+
"mlp.experts.35.down_proj",
|
140 |
+
"mlp.experts.36.gate_proj",
|
141 |
+
"mlp.experts.36.up_proj",
|
142 |
+
"mlp.experts.36.down_proj",
|
143 |
+
"mlp.experts.37.gate_proj",
|
144 |
+
"mlp.experts.37.up_proj",
|
145 |
+
"mlp.experts.37.down_proj",
|
146 |
+
"mlp.experts.38.gate_proj",
|
147 |
+
"mlp.experts.38.up_proj",
|
148 |
+
"mlp.experts.38.down_proj",
|
149 |
+
"mlp.experts.39.gate_proj",
|
150 |
+
"mlp.experts.39.up_proj",
|
151 |
+
"mlp.experts.39.down_proj",
|
152 |
+
"mlp.experts.40.gate_proj",
|
153 |
+
"mlp.experts.40.up_proj",
|
154 |
+
"mlp.experts.40.down_proj",
|
155 |
+
"mlp.experts.41.gate_proj",
|
156 |
+
"mlp.experts.41.up_proj",
|
157 |
+
"mlp.experts.41.down_proj",
|
158 |
+
"mlp.experts.42.gate_proj",
|
159 |
+
"mlp.experts.42.up_proj",
|
160 |
+
"mlp.experts.42.down_proj",
|
161 |
+
"mlp.experts.43.gate_proj",
|
162 |
+
"mlp.experts.43.up_proj",
|
163 |
+
"mlp.experts.43.down_proj",
|
164 |
+
"mlp.experts.44.gate_proj",
|
165 |
+
"mlp.experts.44.up_proj",
|
166 |
+
"mlp.experts.44.down_proj",
|
167 |
+
"mlp.experts.45.gate_proj",
|
168 |
+
"mlp.experts.45.up_proj",
|
169 |
+
"mlp.experts.45.down_proj",
|
170 |
+
"mlp.experts.46.gate_proj",
|
171 |
+
"mlp.experts.46.up_proj",
|
172 |
+
"mlp.experts.46.down_proj",
|
173 |
+
"mlp.experts.47.gate_proj",
|
174 |
+
"mlp.experts.47.up_proj",
|
175 |
+
"mlp.experts.47.down_proj",
|
176 |
+
"mlp.experts.48.gate_proj",
|
177 |
+
"mlp.experts.48.up_proj",
|
178 |
+
"mlp.experts.48.down_proj",
|
179 |
+
"mlp.experts.49.gate_proj",
|
180 |
+
"mlp.experts.49.up_proj",
|
181 |
+
"mlp.experts.49.down_proj",
|
182 |
+
"mlp.experts.50.gate_proj",
|
183 |
+
"mlp.experts.50.up_proj",
|
184 |
+
"mlp.experts.50.down_proj",
|
185 |
+
"mlp.experts.51.gate_proj",
|
186 |
+
"mlp.experts.51.up_proj",
|
187 |
+
"mlp.experts.51.down_proj",
|
188 |
+
"mlp.experts.52.gate_proj",
|
189 |
+
"mlp.experts.52.up_proj",
|
190 |
+
"mlp.experts.52.down_proj",
|
191 |
+
"mlp.experts.53.gate_proj",
|
192 |
+
"mlp.experts.53.up_proj",
|
193 |
+
"mlp.experts.53.down_proj",
|
194 |
+
"mlp.experts.54.gate_proj",
|
195 |
+
"mlp.experts.54.up_proj",
|
196 |
+
"mlp.experts.54.down_proj",
|
197 |
+
"mlp.experts.55.gate_proj",
|
198 |
+
"mlp.experts.55.up_proj",
|
199 |
+
"mlp.experts.55.down_proj",
|
200 |
+
"mlp.experts.56.gate_proj",
|
201 |
+
"mlp.experts.56.up_proj",
|
202 |
+
"mlp.experts.56.down_proj",
|
203 |
+
"mlp.experts.57.gate_proj",
|
204 |
+
"mlp.experts.57.up_proj",
|
205 |
+
"mlp.experts.57.down_proj",
|
206 |
+
"mlp.experts.58.gate_proj",
|
207 |
+
"mlp.experts.58.up_proj",
|
208 |
+
"mlp.experts.58.down_proj",
|
209 |
+
"mlp.experts.59.gate_proj",
|
210 |
+
"mlp.experts.59.up_proj",
|
211 |
+
"mlp.experts.59.down_proj",
|
212 |
+
"mlp.experts.60.gate_proj",
|
213 |
+
"mlp.experts.60.up_proj",
|
214 |
+
"mlp.experts.60.down_proj",
|
215 |
+
"mlp.experts.61.gate_proj",
|
216 |
+
"mlp.experts.61.up_proj",
|
217 |
+
"mlp.experts.61.down_proj",
|
218 |
+
"mlp.experts.62.gate_proj",
|
219 |
+
"mlp.experts.62.up_proj",
|
220 |
+
"mlp.experts.62.down_proj",
|
221 |
+
"mlp.experts.63.gate_proj",
|
222 |
+
"mlp.experts.63.up_proj",
|
223 |
+
"mlp.experts.63.down_proj",
|
224 |
+
"mlp.shared_expert.gate_proj",
|
225 |
+
"mlp.shared_expert.up_proj",
|
226 |
+
"mlp.shared_expert.down_proj"
|
227 |
+
]
|
228 |
+
]
|
229 |
+
}
|