peterizsak
commited on
Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,91 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
---
|
6 |
+
|
7 |
+
# BGE-small-en-v1.5-rag-int8-static
|
8 |
+
|
9 |
+
A quantized version of [BAAI/BGE-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) quantized with [Intel® Neural Compressor](https://github.com/huggingface/optimum-intel) and compatible with [Optimum-Intel](https://github.com/huggingface/optimum-intel).
|
10 |
+
|
11 |
+
The model can be used with [Optimum-Intel](https://github.com/huggingface/optimum-intel) API and as a standalone model or as an embedder or ranker module as part of [fastRAG](https://github.com/IntelLabs/fastRAG) RAG pipeline.
|
12 |
+
|
13 |
+
## Technical details
|
14 |
+
|
15 |
+
Quantized using post-training static quantization.
|
16 |
+
|
17 |
+
| | |
|
18 |
+
|---|:---:|
|
19 |
+
| Calibration set | [qasper](https://huggingface.co/datasets/allenai/qasper) (with 50 random samples)" |
|
20 |
+
| Quantization tool | [Optimum-Intel](https://github.com/huggingface/optimum-intel) |
|
21 |
+
| Backend | `IPEX` |
|
22 |
+
| Original model | [BAAI/BGE-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) |
|
23 |
+
|
24 |
+
Instructions how to reproduce the quantized model can be found [here](https://github.com/IntelLabs/fastRAG/tree/main/scripts/optimizations/embedders).
|
25 |
+
|
26 |
+
## Evaluation - MTEB
|
27 |
+
|
28 |
+
Model performance on the [Massive Text Embedding Benchmark (MTEB)](https://huggingface.co/spaces/mteb/leaderboard) *retrieval* and *reranking* tasks.
|
29 |
+
|
30 |
+
| | `INT8` | `FP32` | % diff |
|
31 |
+
|---|:---:|:---:|:---:|
|
32 |
+
| Reranking | 0.5826 | 0.5836 | -0.166% |
|
33 |
+
| Retrieval | 0.5138 | 0.5168 | -0.58% |
|
34 |
+
|
35 |
+
## Usage
|
36 |
+
|
37 |
+
### Using with Optimum-intel
|
38 |
+
|
39 |
+
See [Optimum-intel](https://github.com/huggingface/optimum-intel) installation page for instructions how to install. Or run:
|
40 |
+
|
41 |
+
``` sh
|
42 |
+
pip install -U optimum[neural-compressor, ipex] intel-extension-for-transformers
|
43 |
+
```
|
44 |
+
|
45 |
+
Loading a model:
|
46 |
+
|
47 |
+
``` python
|
48 |
+
from optimum.intel import IPEXModel
|
49 |
+
|
50 |
+
model = IPEXModel.from_pretrained("Intel/bge-small-en-v1.5-rag-int8-static")
|
51 |
+
```
|
52 |
+
|
53 |
+
Running inference:
|
54 |
+
|
55 |
+
``` python
|
56 |
+
from transformers import AutoTokenizer
|
57 |
+
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained("Intel/bge-small-en-v1.5-rag-int8-static")
|
59 |
+
|
60 |
+
inputs = tokenizer(sentences, return_tensors='pt')
|
61 |
+
|
62 |
+
with torch.no_grad():
|
63 |
+
outputs = model(**inputs)
|
64 |
+
# get the vector of [CLS]
|
65 |
+
embedded = model_output[0][:, 0]
|
66 |
+
```
|
67 |
+
|
68 |
+
### Using with a fastRAG RAG pipeline
|
69 |
+
|
70 |
+
Get started with installing [fastRAG](https://github.com/IntelLabs/fastRAG) as instructed [here](https://github.com/IntelLabs/fastRAG).
|
71 |
+
|
72 |
+
Below is an example for loading the model into a ranker node that embeds and re-ranks all the documents it gets in the node input of a pipeline.
|
73 |
+
|
74 |
+
``` python
|
75 |
+
from fastrag.rankers import QuantizedBiEncoderRanker
|
76 |
+
|
77 |
+
ranker = QuantizedBiEncoderRanker("Intel/bge-small-en-v1.5-rag-int8-static")
|
78 |
+
```
|
79 |
+
|
80 |
+
and plugging it into a pipeline
|
81 |
+
|
82 |
+
``` python
|
83 |
+
|
84 |
+
from haystack import Pipeline
|
85 |
+
|
86 |
+
p = Pipeline()
|
87 |
+
p.add_node(component=retriever, name="retriever", inputs=["Query"])
|
88 |
+
p.add_node(component=ranker, name="ranker", inputs=["retriever"])
|
89 |
+
```
|
90 |
+
|
91 |
+
See a more complete example notebook [here](https://github.com/IntelLabs/fastRAG/blob/main/examples/optimized-embeddings.ipynb).
|