--- license: cc-by-4.0 tags: - int8 - IntelĀ® Neural Compressor - PostTrainingStatic datasets: - squad2 metrics: - f1 --- # INT8 RoBERT base finetuned on Squad2 ### Post-training static quantization This is an INT8 PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [IntelĀ® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2). The calibration dataloader is the train dataloader. The default calibration sampling size 100 isn't divisible exactly by batch size 8, so the real sampling size is 104. The linear modules **roberta.encoder.layer.7.output.dense**, **roberta.encoder.layer.8.output.dense**, **roberta.encoder.layer.9.output.dense**, fall back to fp32 for less than 1% relative accuracy loss. ### Evaluation result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-f1)** |82.3122|82.9231| | **Model size (MB)** |141|474| ### Load with optimum: ```python from optimum.intel.neural_compressor.quantization import IncQuantizedModelForQuestionAnswering int8_model = IncQuantizedModelForQuestionAnswering.from_pretrained( 'Intel/roberta-base-squad2-int8-static', ) ```