English
File size: 1,887 Bytes
2ce0406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch 
import sys
from OLMo_Bitnet_1B.model import OLMo 
from OLMo_Bitnet_1B.config import ModelConfig
from OLMo_Bitnet_1B.configuration_olmo import OLMoConfig
from OLMo_Bitnet_1B.modeling_olmo import OLMoForCausalLM
import json 
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TextStreamer
import llava.model.language_model.llava_olmo1p58b as llava_olmo
import PIL
import torchvision 

device = torch.device('cuda:5' if torch.cuda.is_available() else 'cpu')
torch.manual_seed(42)

with open('llava/config.json') as json_file:
    data = json.load(json_file)
config_class = llava_olmo.LlavaOLMoBitnet1BConfig(**data)

# config_class = OLMoConfig(**data)
model = OLMoForCausalLM(config_class).to(device)
model.load_state_dict(torch.load('OLMo_Bitnet_1B/pytorch_model.bin'))

model.eval()

# tokenizer = AutoTokenizer.from_pretrained("NousResearch/OLMo-Bitnet-1B")

tokenizer = AutoTokenizer.from_pretrained(
            "NousResearch/OLMo-Bitnet-1B",
            cache_dir="./cache/",
            model_max_length=1024,
            padding_side="right",
            pad_token_id=1,
            unk_token='<|padding|>',
            ) 

text = "Paris is a historic city with architectural marvels. It is also "


inputs = tokenizer(text, return_tensors='pt', return_token_type_ids=False).to(device)

# response = model.generate(**inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)


# llava olmo setup 
image_tensor = torchvision.io.read_image('playground/data/LLaVA-Pretrain/images/00316/003163402.jpg')
lolmo = llava_olmo.LlavaOLMoBitnet1BForCausalLM(config_class).to(device)
lolmo.load_state_dict(torch.load('OLMo_Bitnet_1B/pytorch_model.bin'), strict=False)
response = lolmo.generate(inputs=inputs['input_ids'], max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)

print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])