English
File size: 3,850 Bytes
5076284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import json
from transformers import AutoTokenizer
import torch 

import llava.model.language_model.llava_olmo1p58b as llava_olmo ##
import llava.model.language_model.llava_llama as llava_llama

from OLMo_Bitnet_1B.modeling_olmo import OLMoForCausalLM
from PIL import Image
import requests
from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
from llava.conversation import conv_templates


device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
DEFAULT_IMAGE_TOKEN = "<image>"
IMAGE_TOKEN_INDEX = -200 

# Define Image and Text inputs..  
text = "What are the four major tournaments of the sport shown in the image?"
url = "https://farm3.staticflickr.com/2157/2439959136_d932f4e816_z.jpg"
image = Image.open(requests.get(url, stream=True).raw)


# LOAD MODEL FROM CHECKPOINT 
with open('./checkpoints/llava-LlavaOLMoBitnet1B-Run3-finetune/config.json') as json_file:
    data = json.load(json_file)

config_class = llava_olmo.LlavaOLMoBitnet1BConfig(**data)
model = llava_olmo.LlavaOLMoBitnet1BForCausalLM(config_class).to(device)
weight_checkpoint = torch.load('./checkpoints/llava-LlavaOLMoBitnet1B-Run3-finetune/pytorch_model.bin')
model.load_state_dict(weight_checkpoint)

# pre-process image; Apply chat template and tokenize text 
image_processor = model.model.vision_tower.image_processor
tokenizer = AutoTokenizer.from_pretrained(
            "NousResearch/OLMo-Bitnet-1B",
            model_max_length=2048,
            padding_side="right",
            pad_token_id=1,
            use_fast=True,
            legacy=False,
            unk_token='<|padding|>',
            ) 


image_tensor = process_images([image], image_processor, model.config)[0]

text = DEFAULT_IMAGE_TOKEN + '\n' + text
conv = conv_templates['llava_v1'].copy()
conv.append_message(conv.roles[0], text)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()

text_tokens = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(device)

# Generate response from the model 
response = model.generate(images=image_tensor.unsqueeze(0).to(device), inputs=text_tokens, max_new_tokens=400)
decoded_text = tokenizer.batch_decode(response, skip_special_tokens=True)[0]
print("\n\n", "-"*100)
print(decoded_text[:decoded_text.find('</s>')].replace('|||IP_ADDRESS|||', '')) # The replace part is due to unwanted token introduction at start 
print("-"*100)


#
##
#
#
#
'''
# ORIGINAL CODE WITH ONLY OLMO: 
with open('llava/config.json') as json_file:
    data = json.load(json_file)

text = "Paris is a historic city with architectural marvels. It is also "
# text = ["Language modeling is "]

config_class = llava_olmo.LlavaOLMoBitnet1BConfig(**data)
lolmo = llava_olmo.LlavaOLMoBitnet1BForCausalLM(config_class).to(device)
lolmo.load_state_dict(torch.load('OLMo_Bitnet_1B/pytorch_model.bin'), strict=False)

olmo = OLMoForCausalLM(config_class).to(device)
olmo.load_state_dict(torch.load('OLMo_Bitnet_1B/pytorch_model.bin'))
actual_olmo = OLMoForCausalLM.from_pretrained("allenai/OLMo-1B").to(device)

actual_olmo_tokenizer = OLMoTokenizerFast.from_pretrained("allenai/OLMo-1B")
olmo_tokenizer = AutoTokenizer.from_pretrained("NousResearch/OLMo-Bitnet-1B")

olmo_tokens = olmo_tokenizer(text, return_tensors='pt', return_token_type_ids=False).to(device)
# olmo_tokens = actual_olmo_tokenizer(text, return_tensors='pt', return_token_type_ids=False).to(device)


response = lolmo.generate(inputs=olmo_tokens['input_ids'], attention_mask=olmo_tokens['attention_mask'], max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
# response = olmo.generate(inputs=olmo_tokens['input_ids'], attention_mask=olmo_tokens['attention_mask'], max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)


print(olmo_tokenizer.batch_decode(response, skip_special_tokens=True)[0])
'''