import torch import sys from OLMo_Bitnet_1B.model import OLMo from OLMo_Bitnet_1B.config import ModelConfig from OLMo_Bitnet_1B.configuration_olmo import OLMoConfig from OLMo_Bitnet_1B.modeling_olmo import OLMoForCausalLM import json from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TextStreamer import llava.model.language_model.llava_olmo1p58b as llava_olmo import PIL import torchvision device = torch.device('cuda:5' if torch.cuda.is_available() else 'cpu') torch.manual_seed(42) with open('llava/config.json') as json_file: data = json.load(json_file) config_class = llava_olmo.LlavaOLMoBitnet1BConfig(**data) # config_class = OLMoConfig(**data) model = OLMoForCausalLM(config_class).to(device) model.load_state_dict(torch.load('OLMo_Bitnet_1B/pytorch_model.bin')) model.eval() # tokenizer = AutoTokenizer.from_pretrained("NousResearch/OLMo-Bitnet-1B") tokenizer = AutoTokenizer.from_pretrained( "NousResearch/OLMo-Bitnet-1B", cache_dir="./cache/", model_max_length=1024, padding_side="right", pad_token_id=1, unk_token='<|padding|>', ) text = "Paris is a historic city with architectural marvels. It is also " inputs = tokenizer(text, return_tensors='pt', return_token_type_ids=False).to(device) # response = model.generate(**inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95) # llava olmo setup image_tensor = torchvision.io.read_image('playground/data/LLaVA-Pretrain/images/00316/003163402.jpg') lolmo = llava_olmo.LlavaOLMoBitnet1BForCausalLM(config_class).to(device) lolmo.load_state_dict(torch.load('OLMo_Bitnet_1B/pytorch_model.bin'), strict=False) response = lolmo.generate(inputs=inputs['input_ids'], max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95) print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])