pangu-pro-moe-model / configuration_pangu_moe.py
intervitens's picture
Upload folder using huggingface_hub
2e174ea verified
# coding=utf-8
# Copyright (c) Huawei Technologies Co., Ltd. 2025. All rights reserved.
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PanguProMoE model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class PanguProMoEConfig(PretrainedConfig):
model_type = "PanguProMoE"
_auto_class = "AutoConfig"
def __init__(
self,
vocab_size=153376,
hidden_size=5120,
num_hidden_layers=48,
num_attention_heads=40,
num_key_value_heads=8,
hidden_act="silu",
max_position_embeddings=131072,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
tie_word_embeddings=False,
rope_theta=16000000.0,
moe_intermediate_size=1344,
shared_expert_intermediate_size=5376,
num_experts_per_tok=8,
num_experts=64,
output_router_logits=False,
router_aux_loss_coef=0.001,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
# MoE arguments
self.moe_intermediate_size = moe_intermediate_size
self.shared_expert_intermediate_size = shared_expert_intermediate_size
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)