|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PanguProMoE model configuration""" |
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class PanguProMoEConfig(PretrainedConfig): |
|
|
|
model_type = "PanguProMoE" |
|
_auto_class = "AutoConfig" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=153376, |
|
hidden_size=5120, |
|
num_hidden_layers=48, |
|
num_attention_heads=40, |
|
num_key_value_heads=8, |
|
hidden_act="silu", |
|
max_position_embeddings=131072, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-5, |
|
use_cache=True, |
|
tie_word_embeddings=False, |
|
rope_theta=16000000.0, |
|
moe_intermediate_size=1344, |
|
shared_expert_intermediate_size=5376, |
|
num_experts_per_tok=8, |
|
num_experts=64, |
|
output_router_logits=False, |
|
router_aux_loss_coef=0.001, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
|
|
|
|
self.moe_intermediate_size = moe_intermediate_size |
|
self.shared_expert_intermediate_size = shared_expert_intermediate_size |
|
self.num_experts_per_tok = num_experts_per_tok |
|
self.num_experts = num_experts |
|
self.output_router_logits = output_router_logits |
|
self.router_aux_loss_coef = router_aux_loss_coef |
|
|
|
super().__init__( |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|