IsmaelMousa commited on
Commit
ede737a
·
verified ·
1 Parent(s): fc270f3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -17
README.md CHANGED
@@ -41,12 +41,12 @@ language:
41
  pipeline_tag: token-classification
42
  ---
43
 
44
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
45
- should probably proofread and complete it, then remove this comment. -->
46
 
47
- # modernbert-ner-conll2003
 
 
48
 
49
- This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the conll2003 dataset.
50
  It achieves the following results on the evaluation set:
51
  - Loss: 0.0992
52
  - Precision: 0.8349
@@ -54,19 +54,53 @@ It achieves the following results on the evaluation set:
54
  - F1: 0.8455
55
  - Accuracy: 0.9752
56
 
57
- ## Model description
58
-
59
- More information needed
60
-
61
- ## Intended uses & limitations
62
-
63
- More information needed
64
-
65
- ## Training and evaluation data
66
-
67
- More information needed
68
-
69
- ## Training procedure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
  ### Training hyperparameters
72
 
 
41
  pipeline_tag: token-classification
42
  ---
43
 
44
+ # ModernBERT NER (CoNLL2003)
 
45
 
46
+ This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the conll2003 dataset for Named Entity Recognition (NER).
47
+
48
+ Robust performance on tasks involving the recognition of `Persons`, `Organizations`, and `Locations`.
49
 
 
50
  It achieves the following results on the evaluation set:
51
  - Loss: 0.0992
52
  - Precision: 0.8349
 
54
  - F1: 0.8455
55
  - Accuracy: 0.9752
56
 
57
+ ## Model Details
58
+
59
+ - **Base Model:** ModernBERT: [https://doi.org/10.48550/arXiv.2412.13663](https://doi.org/10.48550/arXiv.2412.13663).
60
+ - **Fine-tuning Dataset:** CoNLL2003: [https://huggingface.co/datasets/eriktks/conll2003](https://huggingface.co/datasets/eriktks/conll2003).
61
+ - **Task:** Named Entity Recognition (NER)
62
+
63
+ ## Training Data
64
+
65
+ The model is fine-tuned on the CoNLL2003 dataset, a well-known benchmark for NER.
66
+ This dataset provides a solid foundation for the model to generalize on general English text.
67
+
68
+ ## Example Usage
69
+
70
+ Below is an example of how to use the model with the Hugging Face Transformers library:
71
+
72
+ ```python
73
+ from transformers import pipeline
74
+
75
+ ner = pipeline("token-classification", model="IsmaelMousa/modernbert-ner-conll2003", aggregation_strategy="simple")
76
+
77
+ ner("Hi, I'm Ismael Mousa from Palestine working for NVIDIA inc.")
78
+ ```
79
+
80
+ Results:
81
+
82
+ ```
83
+ [{'entity_group': 'PER',
84
+ 'score': 0.5670353,
85
+ 'word': ' Is',
86
+ 'start': 7,
87
+ 'end': 10},
88
+ {'entity_group': 'PER',
89
+ 'score': 0.90173304,
90
+ 'word': 'mael Mousa',
91
+ 'start': 10,
92
+ 'end': 20},
93
+ {'entity_group': 'LOC',
94
+ 'score': 0.992393,
95
+ 'word': ' Palestine',
96
+ 'start': 25,
97
+ 'end': 35},
98
+ {'entity_group': 'ORG',
99
+ 'score': 0.75373423,
100
+ 'word': ' NVIDIA inc',
101
+ 'start': 47,
102
+ 'end': 58}]
103
+ ```
104
 
105
  ### Training hyperparameters
106