Update README.md
Browse files
README.md
CHANGED
@@ -41,12 +41,12 @@ language:
|
|
41 |
pipeline_tag: token-classification
|
42 |
---
|
43 |
|
44 |
-
|
45 |
-
should probably proofread and complete it, then remove this comment. -->
|
46 |
|
47 |
-
|
|
|
|
|
48 |
|
49 |
-
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the conll2003 dataset.
|
50 |
It achieves the following results on the evaluation set:
|
51 |
- Loss: 0.0992
|
52 |
- Precision: 0.8349
|
@@ -54,19 +54,53 @@ It achieves the following results on the evaluation set:
|
|
54 |
- F1: 0.8455
|
55 |
- Accuracy: 0.9752
|
56 |
|
57 |
-
## Model
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
### Training hyperparameters
|
72 |
|
|
|
41 |
pipeline_tag: token-classification
|
42 |
---
|
43 |
|
44 |
+
# ModernBERT NER (CoNLL2003)
|
|
|
45 |
|
46 |
+
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the conll2003 dataset for Named Entity Recognition (NER).
|
47 |
+
|
48 |
+
Robust performance on tasks involving the recognition of `Persons`, `Organizations`, and `Locations`.
|
49 |
|
|
|
50 |
It achieves the following results on the evaluation set:
|
51 |
- Loss: 0.0992
|
52 |
- Precision: 0.8349
|
|
|
54 |
- F1: 0.8455
|
55 |
- Accuracy: 0.9752
|
56 |
|
57 |
+
## Model Details
|
58 |
+
|
59 |
+
- **Base Model:** ModernBERT: [https://doi.org/10.48550/arXiv.2412.13663](https://doi.org/10.48550/arXiv.2412.13663).
|
60 |
+
- **Fine-tuning Dataset:** CoNLL2003: [https://huggingface.co/datasets/eriktks/conll2003](https://huggingface.co/datasets/eriktks/conll2003).
|
61 |
+
- **Task:** Named Entity Recognition (NER)
|
62 |
+
|
63 |
+
## Training Data
|
64 |
+
|
65 |
+
The model is fine-tuned on the CoNLL2003 dataset, a well-known benchmark for NER.
|
66 |
+
This dataset provides a solid foundation for the model to generalize on general English text.
|
67 |
+
|
68 |
+
## Example Usage
|
69 |
+
|
70 |
+
Below is an example of how to use the model with the Hugging Face Transformers library:
|
71 |
+
|
72 |
+
```python
|
73 |
+
from transformers import pipeline
|
74 |
+
|
75 |
+
ner = pipeline("token-classification", model="IsmaelMousa/modernbert-ner-conll2003", aggregation_strategy="simple")
|
76 |
+
|
77 |
+
ner("Hi, I'm Ismael Mousa from Palestine working for NVIDIA inc.")
|
78 |
+
```
|
79 |
+
|
80 |
+
Results:
|
81 |
+
|
82 |
+
```
|
83 |
+
[{'entity_group': 'PER',
|
84 |
+
'score': 0.5670353,
|
85 |
+
'word': ' Is',
|
86 |
+
'start': 7,
|
87 |
+
'end': 10},
|
88 |
+
{'entity_group': 'PER',
|
89 |
+
'score': 0.90173304,
|
90 |
+
'word': 'mael Mousa',
|
91 |
+
'start': 10,
|
92 |
+
'end': 20},
|
93 |
+
{'entity_group': 'LOC',
|
94 |
+
'score': 0.992393,
|
95 |
+
'word': ' Palestine',
|
96 |
+
'start': 25,
|
97 |
+
'end': 35},
|
98 |
+
{'entity_group': 'ORG',
|
99 |
+
'score': 0.75373423,
|
100 |
+
'word': ' NVIDIA inc',
|
101 |
+
'start': 47,
|
102 |
+
'end': 58}]
|
103 |
+
```
|
104 |
|
105 |
### Training hyperparameters
|
106 |
|