Upload folder using huggingface_hub
Browse files- crop_desease_detection.ipynb +0 -0
- crop_desease_detection.py +601 -0
crop_desease_detection.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
crop_desease_detection.py
ADDED
@@ -0,0 +1,601 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""crop_desease_detection.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1PCO8YxMl3tqzsbMVP1iiSylwED-u_VfW
|
8 |
+
"""
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
# Complete Pipeline for Tree Disease Detection with PDT Dataset
|
17 |
+
|
18 |
+
# Cell 1: Install required packages
|
19 |
+
!pip install ultralytics torch torchvision opencv-python matplotlib
|
20 |
+
!pip install huggingface_hub
|
21 |
+
|
22 |
+
import os
|
23 |
+
import shutil
|
24 |
+
import zipfile
|
25 |
+
from ultralytics import YOLO
|
26 |
+
import torch
|
27 |
+
import cv2
|
28 |
+
import matplotlib.pyplot as plt
|
29 |
+
import numpy as np
|
30 |
+
from huggingface_hub import snapshot_download
|
31 |
+
from IPython.display import Image, display
|
32 |
+
|
33 |
+
# Cell 2: Download the PDT dataset from HuggingFace
|
34 |
+
print("Downloading PDT dataset from HuggingFace...")
|
35 |
+
|
36 |
+
try:
|
37 |
+
dataset_path = snapshot_download(
|
38 |
+
repo_id='qwer0213/PDT_dataset',
|
39 |
+
repo_type='dataset',
|
40 |
+
local_dir='/content/PDT_dataset',
|
41 |
+
resume_download=True
|
42 |
+
)
|
43 |
+
print(f"Dataset downloaded to: {dataset_path}")
|
44 |
+
except Exception as e:
|
45 |
+
print(f"Error downloading dataset: {e}")
|
46 |
+
|
47 |
+
# Cell 3: Find and extract the zip file
|
48 |
+
print("\nLooking for zip file in downloaded dataset...")
|
49 |
+
|
50 |
+
# Find the zip file
|
51 |
+
zip_file_path = None
|
52 |
+
for root, dirs, files in os.walk('/content/PDT_dataset'):
|
53 |
+
for file in files:
|
54 |
+
if file.endswith('.zip'):
|
55 |
+
zip_file_path = os.path.join(root, file)
|
56 |
+
print(f"Found zip file: {zip_file_path}")
|
57 |
+
break
|
58 |
+
if zip_file_path:
|
59 |
+
break
|
60 |
+
|
61 |
+
if not zip_file_path:
|
62 |
+
print("No zip file found in the downloaded dataset!")
|
63 |
+
else:
|
64 |
+
# Extract the zip file
|
65 |
+
extract_path = '/content/PDT_dataset_extracted'
|
66 |
+
os.makedirs(extract_path, exist_ok=True)
|
67 |
+
|
68 |
+
print(f"Extracting {zip_file_path} to {extract_path}")
|
69 |
+
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
|
70 |
+
zip_ref.extractall(extract_path)
|
71 |
+
print("Extraction completed!")
|
72 |
+
|
73 |
+
# Cell 4: Explore the extracted dataset structure
|
74 |
+
print("\nExploring dataset structure...")
|
75 |
+
|
76 |
+
def explore_dataset_structure(base_path):
|
77 |
+
"""Explore and find the actual dataset structure"""
|
78 |
+
dataset_info = {
|
79 |
+
'yolo_txt_path': None,
|
80 |
+
'voc_xml_path': None,
|
81 |
+
'train_path': None,
|
82 |
+
'val_path': None,
|
83 |
+
'test_path': None
|
84 |
+
}
|
85 |
+
|
86 |
+
for root, dirs, files in os.walk(base_path):
|
87 |
+
# Look for YOLO_txt directory
|
88 |
+
if 'YOLO_txt' in root:
|
89 |
+
dataset_info['yolo_txt_path'] = root
|
90 |
+
print(f"Found YOLO_txt at: {root}")
|
91 |
+
|
92 |
+
# Check for train/val/test
|
93 |
+
for split in ['train', 'val', 'test']:
|
94 |
+
split_path = os.path.join(root, split)
|
95 |
+
if os.path.exists(split_path):
|
96 |
+
dataset_info[f'{split}_path'] = split_path
|
97 |
+
print(f"Found {split} at: {split_path}")
|
98 |
+
|
99 |
+
# Look for VOC_xml directory
|
100 |
+
if 'VOC_xml' in root:
|
101 |
+
dataset_info['voc_xml_path'] = root
|
102 |
+
print(f"Found VOC_xml at: {root}")
|
103 |
+
|
104 |
+
return dataset_info
|
105 |
+
|
106 |
+
dataset_info = explore_dataset_structure('/content/PDT_dataset_extracted')
|
107 |
+
|
108 |
+
# Cell 5: Setup YOLO dataset from the PDT dataset
|
109 |
+
def setup_yolo_dataset(dataset_info, output_dir='/content/PDT_yolo'):
|
110 |
+
"""Setup YOLO dataset from the extracted PDT dataset"""
|
111 |
+
print(f"\nSetting up YOLO dataset to {output_dir}")
|
112 |
+
|
113 |
+
# Clean output directory
|
114 |
+
if os.path.exists(output_dir):
|
115 |
+
shutil.rmtree(output_dir)
|
116 |
+
os.makedirs(output_dir, exist_ok=True)
|
117 |
+
|
118 |
+
# Create directory structure
|
119 |
+
for split in ['train', 'val', 'test']:
|
120 |
+
os.makedirs(os.path.join(output_dir, 'images', split), exist_ok=True)
|
121 |
+
os.makedirs(os.path.join(output_dir, 'labels', split), exist_ok=True)
|
122 |
+
|
123 |
+
total_copied = 0
|
124 |
+
|
125 |
+
# Process each split
|
126 |
+
for split in ['train', 'val', 'test']:
|
127 |
+
split_path = dataset_info[f'{split}_path']
|
128 |
+
|
129 |
+
if not split_path or not os.path.exists(split_path):
|
130 |
+
print(f"Warning: {split} split not found")
|
131 |
+
continue
|
132 |
+
|
133 |
+
print(f"\nProcessing {split} from: {split_path}")
|
134 |
+
|
135 |
+
# Find images and labels directories
|
136 |
+
img_dir = os.path.join(split_path, 'images')
|
137 |
+
lbl_dir = os.path.join(split_path, 'labels')
|
138 |
+
|
139 |
+
if not os.path.exists(img_dir) or not os.path.exists(lbl_dir):
|
140 |
+
print(f"Warning: Could not find images or labels for {split}")
|
141 |
+
continue
|
142 |
+
|
143 |
+
# Copy images and labels
|
144 |
+
img_files = [f for f in os.listdir(img_dir) if f.endswith(('.jpg', '.jpeg', '.png'))]
|
145 |
+
print(f"Found {len(img_files)} images in {split}")
|
146 |
+
|
147 |
+
for img_file in img_files:
|
148 |
+
# Copy image
|
149 |
+
src_img = os.path.join(img_dir, img_file)
|
150 |
+
dst_img = os.path.join(output_dir, 'images', split, img_file)
|
151 |
+
shutil.copy2(src_img, dst_img)
|
152 |
+
|
153 |
+
# Copy corresponding label
|
154 |
+
base_name = os.path.splitext(img_file)[0]
|
155 |
+
txt_file = base_name + '.txt'
|
156 |
+
src_txt = os.path.join(lbl_dir, txt_file)
|
157 |
+
dst_txt = os.path.join(output_dir, 'labels', split, txt_file)
|
158 |
+
|
159 |
+
if os.path.exists(src_txt):
|
160 |
+
shutil.copy2(src_txt, dst_txt)
|
161 |
+
total_copied += 1
|
162 |
+
|
163 |
+
# Create data.yaml
|
164 |
+
data_yaml_content = f"""# PDT dataset configuration
|
165 |
+
path: {os.path.abspath(output_dir)}
|
166 |
+
train: images/train
|
167 |
+
val: images/val
|
168 |
+
test: images/test
|
169 |
+
|
170 |
+
# Classes
|
171 |
+
names:
|
172 |
+
0: unhealthy
|
173 |
+
nc: 1
|
174 |
+
"""
|
175 |
+
|
176 |
+
yaml_path = os.path.join(output_dir, 'data.yaml')
|
177 |
+
with open(yaml_path, 'w') as f:
|
178 |
+
f.write(data_yaml_content)
|
179 |
+
|
180 |
+
print(f"\nDataset setup completed!")
|
181 |
+
print(f"Total images copied: {total_copied}")
|
182 |
+
|
183 |
+
# Verify the dataset
|
184 |
+
for split in ['train', 'val', 'test']:
|
185 |
+
img_dir = os.path.join(output_dir, 'images', split)
|
186 |
+
lbl_dir = os.path.join(output_dir, 'labels', split)
|
187 |
+
if os.path.exists(img_dir):
|
188 |
+
img_count = len([f for f in os.listdir(img_dir) if f.endswith(('.jpg', '.jpeg', '.png'))])
|
189 |
+
lbl_count = len([f for f in os.listdir(lbl_dir) if f.endswith('.txt')])
|
190 |
+
print(f"{split}: {img_count} images, {lbl_count} labels")
|
191 |
+
|
192 |
+
return yaml_path
|
193 |
+
|
194 |
+
# Setup the dataset
|
195 |
+
data_yaml_path = setup_yolo_dataset(dataset_info)
|
196 |
+
|
197 |
+
# Cell 6: Train the model
|
198 |
+
print("\nStarting model training...")
|
199 |
+
|
200 |
+
# Use YOLOv8s model
|
201 |
+
model = YOLO('yolov8s.yaml')
|
202 |
+
|
203 |
+
# Train the model
|
204 |
+
results = model.train(
|
205 |
+
data=data_yaml_path,
|
206 |
+
epochs=50, # Adjust based on your needs
|
207 |
+
imgsz=640,
|
208 |
+
batch=16, # Adjust based on GPU memory
|
209 |
+
name='yolov8s_pdt',
|
210 |
+
patience=10,
|
211 |
+
save=True,
|
212 |
+
device='0' if torch.cuda.is_available() else 'cpu',
|
213 |
+
workers=4,
|
214 |
+
project='runs/train',
|
215 |
+
exist_ok=True,
|
216 |
+
pretrained=False,
|
217 |
+
optimizer='SGD',
|
218 |
+
lr0=0.01,
|
219 |
+
momentum=0.9,
|
220 |
+
weight_decay=0.001,
|
221 |
+
verbose=True,
|
222 |
+
plots=True,
|
223 |
+
)
|
224 |
+
|
225 |
+
print("Training completed!")
|
226 |
+
|
227 |
+
# Cell 7: Evaluate the model
|
228 |
+
print("\nEvaluating model performance...")
|
229 |
+
|
230 |
+
# Load the best model
|
231 |
+
best_model_path = 'runs/train/yolov8s_pdt/weights/best.pt'
|
232 |
+
model = YOLO(best_model_path)
|
233 |
+
|
234 |
+
# Validate
|
235 |
+
metrics = model.val()
|
236 |
+
|
237 |
+
print(f"\nValidation Metrics:")
|
238 |
+
print(f"mAP50: {metrics.box.map50:.3f}")
|
239 |
+
print(f"mAP50-95: {metrics.box.map:.3f}")
|
240 |
+
print(f"Precision: {metrics.box.p.mean():.3f}")
|
241 |
+
print(f"Recall: {metrics.box.r.mean():.3f}")
|
242 |
+
|
243 |
+
# Cell 8: Test the model
|
244 |
+
print("\nTesting on sample images...")
|
245 |
+
|
246 |
+
# Test on validation images
|
247 |
+
val_img_dir = '/content/PDT_yolo/images/val'
|
248 |
+
val_images = [f for f in os.listdir(val_img_dir) if f.endswith(('.jpg', '.jpeg', '.png'))][:5]
|
249 |
+
|
250 |
+
fig, axes = plt.subplots(2, 3, figsize=(18, 12))
|
251 |
+
axes = axes.ravel()
|
252 |
+
|
253 |
+
for i, img_name in enumerate(val_images[:6]):
|
254 |
+
img_path = os.path.join(val_img_dir, img_name)
|
255 |
+
|
256 |
+
# Run inference
|
257 |
+
results = model(img_path, conf=0.25)
|
258 |
+
|
259 |
+
# Plot results
|
260 |
+
img_with_boxes = results[0].plot()
|
261 |
+
axes[i].imshow(cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB))
|
262 |
+
axes[i].set_title(f'{img_name}')
|
263 |
+
axes[i].axis('off')
|
264 |
+
|
265 |
+
# Hide empty subplot
|
266 |
+
if len(val_images) < 6:
|
267 |
+
axes[5].axis('off')
|
268 |
+
|
269 |
+
plt.tight_layout()
|
270 |
+
plt.show()
|
271 |
+
|
272 |
+
# Cell 9: Create inference function
|
273 |
+
def detect_tree_disease(image_path, conf_threshold=0.25):
|
274 |
+
"""Detect unhealthy trees in an image"""
|
275 |
+
results = model(image_path, conf=conf_threshold)
|
276 |
+
|
277 |
+
detections = []
|
278 |
+
for result in results:
|
279 |
+
boxes = result.boxes
|
280 |
+
if boxes is not None:
|
281 |
+
for box in boxes:
|
282 |
+
detection = {
|
283 |
+
'confidence': float(box.conf[0]),
|
284 |
+
'bbox': box.xyxy[0].tolist(),
|
285 |
+
'class': 'unhealthy'
|
286 |
+
}
|
287 |
+
detections.append(detection)
|
288 |
+
|
289 |
+
# Visualize
|
290 |
+
img_with_boxes = results[0].plot()
|
291 |
+
plt.figure(figsize=(12, 8))
|
292 |
+
plt.imshow(cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB))
|
293 |
+
plt.axis('off')
|
294 |
+
plt.title(f'Detected {len(detections)} unhealthy tree(s)')
|
295 |
+
plt.show()
|
296 |
+
|
297 |
+
return detections
|
298 |
+
|
299 |
+
# Cell 10: Save the model
|
300 |
+
print("\nSaving model...")
|
301 |
+
final_model_path = 'tree_disease_detector.pt'
|
302 |
+
model.save(final_model_path)
|
303 |
+
print(f"Model saved to: {final_model_path}")
|
304 |
+
|
305 |
+
# Cell 11: Save to Google Drive (optional)
|
306 |
+
from google.colab import drive
|
307 |
+
|
308 |
+
try:
|
309 |
+
drive.mount('/content/drive')
|
310 |
+
|
311 |
+
save_dir = '/content/drive/MyDrive/tree_disease_detection'
|
312 |
+
os.makedirs(save_dir, exist_ok=True)
|
313 |
+
|
314 |
+
# Copy files
|
315 |
+
shutil.copy(best_model_path, os.path.join(save_dir, 'best_model.pt'))
|
316 |
+
shutil.copy(final_model_path, os.path.join(save_dir, 'tree_disease_detector.pt'))
|
317 |
+
|
318 |
+
# Copy training results
|
319 |
+
results_png = 'runs/train/yolov8s_pdt/results.png'
|
320 |
+
if os.path.exists(results_png):
|
321 |
+
shutil.copy(results_png, os.path.join(save_dir, 'training_results.png'))
|
322 |
+
|
323 |
+
print(f"Results saved to Google Drive: {save_dir}")
|
324 |
+
except:
|
325 |
+
print("Google Drive not mounted. Results saved locally.")
|
326 |
+
|
327 |
+
# Cell 12: Summary
|
328 |
+
print("\n=== Training Complete ===")
|
329 |
+
print("Model: YOLOv8s")
|
330 |
+
print("Dataset: PDT (Pests and Diseases Tree)")
|
331 |
+
print(f"Best Model: {best_model_path}")
|
332 |
+
print("The model is ready for tree disease detection!")
|
333 |
+
|
334 |
+
# Test with your own image
|
335 |
+
print("\nTo test with your own image:")
|
336 |
+
print("detections = detect_tree_disease('path/to/your/image.jpg')")
|
337 |
+
|
338 |
+
|
339 |
+
|
340 |
+
|
341 |
+
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
+
|
346 |
+
# Cell 1: Install Hugging Face Hub
|
347 |
+
!pip install huggingface_hub
|
348 |
+
|
349 |
+
# Cell 2: Login to Hugging Face
|
350 |
+
from huggingface_hub import login, HfApi, create_repo
|
351 |
+
import os
|
352 |
+
import shutil
|
353 |
+
|
354 |
+
# Login to Hugging Face (you'll need your token)
|
355 |
+
# Get your token from: https://huggingface.co/settings/tokens
|
356 |
+
login()
|
357 |
+
|
358 |
+
# Cell 3: Prepare model files for upload
|
359 |
+
# Create a directory for model files
|
360 |
+
model_dir = "pdt_tree_disease_model"
|
361 |
+
os.makedirs(model_dir, exist_ok=True)
|
362 |
+
|
363 |
+
# Copy the trained model
|
364 |
+
best_model_path = 'runs/train/yolov8s_pdt/weights/best.pt'
|
365 |
+
if os.path.exists(best_model_path):
|
366 |
+
shutil.copy(best_model_path, os.path.join(model_dir, "best.pt"))
|
367 |
+
|
368 |
+
# Copy the final saved model
|
369 |
+
if os.path.exists('tree_disease_detector.pt'):
|
370 |
+
shutil.copy('tree_disease_detector.pt', os.path.join(model_dir, "tree_disease_detector.pt"))
|
371 |
+
|
372 |
+
# Copy training results
|
373 |
+
results_path = 'runs/train/yolov8s_pdt/results.png'
|
374 |
+
if os.path.exists(results_path):
|
375 |
+
shutil.copy(results_path, os.path.join(model_dir, "training_results.png"))
|
376 |
+
|
377 |
+
# Copy confusion matrix if exists
|
378 |
+
confusion_matrix_path = 'runs/train/yolov8s_pdt/confusion_matrix.png'
|
379 |
+
if os.path.exists(confusion_matrix_path):
|
380 |
+
shutil.copy(confusion_matrix_path, os.path.join(model_dir, "confusion_matrix.png"))
|
381 |
+
|
382 |
+
# Copy other training plots
|
383 |
+
for plot_file in ['F1_curve.png', 'P_curve.png', 'R_curve.png', 'PR_curve.png']:
|
384 |
+
plot_path = f'runs/train/yolov8s_pdt/{plot_file}'
|
385 |
+
if os.path.exists(plot_path):
|
386 |
+
shutil.copy(plot_path, os.path.join(model_dir, plot_file))
|
387 |
+
|
388 |
+
# Cell 4: Create model card (README.md)
|
389 |
+
model_card = """---
|
390 |
+
tags:
|
391 |
+
- object-detection
|
392 |
+
- yolov8
|
393 |
+
- tree-disease-detection
|
394 |
+
- pdt-dataset
|
395 |
+
library_name: ultralytics
|
396 |
+
datasets:
|
397 |
+
- qwer0213/PDT_dataset
|
398 |
+
metrics:
|
399 |
+
- mAP50
|
400 |
+
- mAP50-95
|
401 |
+
---
|
402 |
+
|
403 |
+
# YOLOv8 Tree Disease Detection Model
|
404 |
+
|
405 |
+
This model is trained on the PDT (Pests and Diseases Tree) dataset for detecting unhealthy trees using YOLOv8.
|
406 |
+
|
407 |
+
## Model Description
|
408 |
+
|
409 |
+
- **Architecture**: YOLOv8s
|
410 |
+
- **Task**: Object Detection (Tree Disease Detection)
|
411 |
+
- **Classes**: 1 (unhealthy)
|
412 |
+
- **Input Size**: 640x640
|
413 |
+
- **Framework**: Ultralytics YOLOv8
|
414 |
+
|
415 |
+
## Training Details
|
416 |
+
|
417 |
+
- **Dataset**: PDT (Pests and Diseases Tree) dataset
|
418 |
+
- **Training Images**: 4,536
|
419 |
+
- **Validation Images**: 567
|
420 |
+
- **Test Images**: 567
|
421 |
+
- **Epochs**: 50
|
422 |
+
- **Batch Size**: 16
|
423 |
+
- **Optimizer**: SGD
|
424 |
+
- **Learning Rate**: 0.01
|
425 |
+
|
426 |
+
## Performance Metrics
|
427 |
+
|
428 |
+
| Metric | Value |
|
429 |
+
|--------|-------|
|
430 |
+
| mAP50 | 0.xxx |
|
431 |
+
| mAP50-95 | 0.xxx |
|
432 |
+
| Precision | 0.xxx |
|
433 |
+
| Recall | 0.xxx |
|
434 |
+
|
435 |
+
## Usage
|
436 |
+
|
437 |
+
```python
|
438 |
+
from ultralytics import YOLO
|
439 |
+
|
440 |
+
# Load model
|
441 |
+
model = YOLO('tree_disease_detector.pt')
|
442 |
+
|
443 |
+
# Run inference
|
444 |
+
results = model('path/to/image.jpg')
|
445 |
+
|
446 |
+
# Process results
|
447 |
+
for result in results:
|
448 |
+
boxes = result.boxes
|
449 |
+
if boxes is not None:
|
450 |
+
for box in boxes:
|
451 |
+
confidence = box.conf[0]
|
452 |
+
bbox = box.xyxy[0].tolist()
|
453 |
+
print(f"Unhealthy tree detected with confidence: {confidence}")
|
454 |
+
Dataset
|
455 |
+
This model was trained on the PDT dataset, which contains high-resolution UAV images of trees with pest and disease annotations.
|
456 |
+
Citation
|
457 |
+
bibtex@dataset{pdt_dataset,
|
458 |
+
title={PDT: UAV Pests and Diseases Tree Dataset},
|
459 |
+
author={Zhou et al.},
|
460 |
+
year={2024},
|
461 |
+
publisher={HuggingFace}
|
462 |
+
}
|
463 |
+
License
|
464 |
+
MIT License
|
465 |
+
"""
|
466 |
+
Fill in the actual metrics
|
467 |
+
if 'metrics' in globals() and metrics is not None:
|
468 |
+
model_card = model_card.replace('0.xxx', f'{metrics.box.map50:.3f}')
|
469 |
+
model_card = model_card.replace('0.xxx', f'{metrics.box.map:.3f}')
|
470 |
+
model_card = model_card.replace('0.xxx', f'{metrics.box.p.mean():.3f}')
|
471 |
+
model_card = model_card.replace('0.xxx', f'{metrics.box.r.mean():.3f}')
|
472 |
+
Save model card
|
473 |
+
with open(os.path.join(model_dir, "README.md"), "w") as f:
|
474 |
+
f.write(model_card)
|
475 |
+
Cell 5: Create config file
|
476 |
+
config_content = """# YOLOv8 Tree Disease Detection Configuration
|
477 |
+
model_type: yolov8s
|
478 |
+
task: detect
|
479 |
+
nc: 1 # number of classes
|
480 |
+
names: ['unhealthy'] # class names
|
481 |
+
Input
|
482 |
+
imgsz: 640
|
483 |
+
Inference settings
|
484 |
+
conf: 0.25 # confidence threshold
|
485 |
+
iou: 0.45 # IoU threshold for NMS
|
486 |
+
"""
|
487 |
+
with open(os.path.join(model_dir, "config.yaml"), "w") as f:
|
488 |
+
f.write(config_content)
|
489 |
+
Cell 6: Push to Hugging Face Hub
|
490 |
+
from huggingface_hub import HfApi
|
491 |
+
Initialize API
|
492 |
+
api = HfApi()
|
493 |
+
Create repository (replace 'your-username' with your HuggingFace username)
|
494 |
+
repo_id = "your-username/yolov8-tree-disease-detection" # Change this!
|
495 |
+
Create the repository
|
496 |
+
try:
|
497 |
+
create_repo(
|
498 |
+
repo_id=repo_id,
|
499 |
+
repo_type="model",
|
500 |
+
exist_ok=True
|
501 |
+
)
|
502 |
+
print(f"Repository created: https://huggingface.co/{repo_id}")
|
503 |
+
except Exception as e:
|
504 |
+
print(f"Repository might already exist or error: {e}")
|
505 |
+
Upload all files in the model directory
|
506 |
+
api.upload_folder(
|
507 |
+
folder_path=model_dir,
|
508 |
+
repo_id=repo_id,
|
509 |
+
repo_type="model",
|
510 |
+
)
|
511 |
+
print(f"Model uploaded successfully to: https://huggingface.co/{repo_id}")
|
512 |
+
Cell 7: Create a simple inference script for users
|
513 |
+
inference_script = """# Tree Disease Detection Inference
|
514 |
+
from ultralytics import YOLO
|
515 |
+
import cv2
|
516 |
+
import matplotlib.pyplot as plt
|
517 |
+
Download and load model from Hugging Face
|
518 |
+
model = YOLO('https://huggingface.co/{}/resolve/main/tree_disease_detector.pt')
|
519 |
+
def detect_tree_disease(image_path):
|
520 |
+
# Run inference
|
521 |
+
results = model(image_path, conf=0.25)
|
522 |
+
# Process results
|
523 |
+
detections = []
|
524 |
+
for result in results:
|
525 |
+
boxes = result.boxes
|
526 |
+
if boxes is not None:
|
527 |
+
for box in boxes:
|
528 |
+
detection = {
|
529 |
+
'confidence': float(box.conf[0]),
|
530 |
+
'bbox': box.xyxy[0].tolist(),
|
531 |
+
'class': 'unhealthy'
|
532 |
+
}
|
533 |
+
detections.append(detection)
|
534 |
+
|
535 |
+
# Visualize
|
536 |
+
annotated_img = results[0].plot()
|
537 |
+
plt.figure(figsize=(12, 8))
|
538 |
+
plt.imshow(cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB))
|
539 |
+
plt.axis('off')
|
540 |
+
plt.title(f'Detected {len(detections)} unhealthy tree(s)')
|
541 |
+
plt.show()
|
542 |
+
|
543 |
+
return detections
|
544 |
+
Example usage
|
545 |
+
if name == "main":
|
546 |
+
detections = detect_tree_disease('path/to/your/image.jpg')
|
547 |
+
print(f"Found {len(detections)} unhealthy trees")
|
548 |
+
""".format(repo_id)
|
549 |
+
with open(os.path.join(model_dir, "inference.py"), "w") as f:
|
550 |
+
f.write(inference_script)
|
551 |
+
Upload the inference script
|
552 |
+
api.upload_file(
|
553 |
+
path_or_fileobj=os.path.join(model_dir, "inference.py"),
|
554 |
+
path_in_repo="inference.py",
|
555 |
+
repo_id=repo_id,
|
556 |
+
repo_type="model",
|
557 |
+
)
|
558 |
+
Cell 8: Create requirements.txt
|
559 |
+
requirements = """ultralytics>=8.0.0
|
560 |
+
torch>=2.0.0
|
561 |
+
opencv-python>=4.8.0
|
562 |
+
matplotlib>=3.7.0
|
563 |
+
pillow>=10.0.0
|
564 |
+
"""
|
565 |
+
with open(os.path.join(model_dir, "requirements.txt"), "w") as f:
|
566 |
+
f.write(requirements)
|
567 |
+
Upload requirements
|
568 |
+
api.upload_file(
|
569 |
+
path_or_fileobj=os.path.join(model_dir, "requirements.txt"),
|
570 |
+
path_in_repo="requirements.txt",
|
571 |
+
repo_id=repo_id,
|
572 |
+
repo_type="model",
|
573 |
+
)
|
574 |
+
print("\nModel successfully uploaded to Hugging Face!")
|
575 |
+
print(f"View your model at: https://huggingface.co/{repo_id}")
|
576 |
+
print("\nTo use your model:")
|
577 |
+
print(f"model = YOLO('https://huggingface.co/{repo_id}/resolve/main/tree_disease_detector.pt')")
|
578 |
+
|
579 |
+
## Steps to upload your model:
|
580 |
+
|
581 |
+
1. **Get a Hugging Face token**:
|
582 |
+
- Go to https://huggingface.co/settings/tokens
|
583 |
+
- Create a new token with write permissions
|
584 |
+
- Copy the token
|
585 |
+
|
586 |
+
2. **Replace placeholder values**:
|
587 |
+
- Change `your-username` to your actual Hugging Face username
|
588 |
+
- Update the metrics in the model card with actual values
|
589 |
+
|
590 |
+
3. **Run the cells** in order
|
591 |
+
|
592 |
+
## After uploading, others can use your model like this:
|
593 |
+
|
594 |
+
```python
|
595 |
+
from ultralytics import YOLO
|
596 |
+
|
597 |
+
# Load model directly from Hugging Face
|
598 |
+
model = YOLO('https://huggingface.co/your-username/yolov8-tree-disease-detection/resolve/main/tree_disease_detector.pt')
|
599 |
+
|
600 |
+
# Run inference
|
601 |
+
results = model('image.jpg')
|