--- license: other license_name: nvidia-open-model-license license_link: >- https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/ base_model: - nvidia/Llama-3_1-Nemotron-Ultra-253B-v1 --- # Llama-3_1-Nemotron-Ultra-253B-v1-W8A8-Dynamic SmoothQuant/GPTQ W8A8 quantization of https://huggingface.co/nvidia/Llama-3_1-Nemotron-Ultra-253B-v1 ## Creation Created with llmcompressor using the following code: ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM from datasets import load_dataset from llmcompressor import oneshot from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.modifiers.smoothquant import SmoothQuantModifier from llmcompressor.transformers.compression.helpers import calculate_offload_device_map import random # Config MODEL_ID = "/models/Llama-3_1-Nemotron-Ultra-253B-v1" SAVE_DIR = "/models/Llama-3_1-Nemotron-Ultra-253B-v1-W8A8-Dynamic" NUM_CALIBRATION_SAMPLES = 1024 MAX_SEQUENCE_LENGTH = 4096 # Load model device_map = calculate_offload_device_map( MODEL_ID, num_gpus=8, reserve_for_hessians=False, torch_dtype="auto", trust_remote_code=True, ) print(device_map) model = AutoModelForCausalLM.from_pretrained( MODEL_ID, device_map=device_map, torch_dtype="auto", trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) # Load and preprocess the dataset ds = load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft") ds = ds.shuffle(seed=1337).select(range(NUM_CALIBRATION_SAMPLES)) def add_system_prompt(messages): options = ["on", "off"] thinking = random.choice(options) return [{"content": f"detailed thinking {thinking}", "role": "system"}] + messages def preprocess(example): return {"text": tokenizer.apply_chat_template(add_system_prompt(example["messages"]), tokenize=False)} ds = ds.map(preprocess) def tokenize(sample): return tokenizer(sample["text"], padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False) ds = ds.map(tokenize, remove_columns=ds.column_names) # Configure the quantization algorithms recipe = [ SmoothQuantModifier(smoothing_strength=0.8), GPTQModifier(targets="Linear", scheme="W8A8", ignore=["lm_head", "re:.*125.*", "re:.*134.*", "re:.*143.*", "re:.*149.*"], dampening_frac=0.01, offload_hessians=False), ] # Apply quantization oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=MAX_SEQUENCE_LENGTH, num_calibration_samples=NUM_CALIBRATION_SAMPLES, trust_remote_code_model=True ) # Save the compressed model model.save_pretrained(SAVE_DIR, save_compressed=True) tokenizer.save_pretrained(SAVE_DIR) ``` **Note** that Layers 125, 134, 143 and 149 had to be **excluded** from GPTQ quantization, because their extreme size would lead to allocations of 600+GB Heassian matrices for GPTQ (which couldn't be offloaded for some reason). Furthermore, the GPU memory allocation code in calculate_offload_device_map() was adjusted. ## Evaluation ### GSM8K (3 Runs) #### Original |Tasks|Version| Filter |n-shot| Metric | |Value | |Stderr| |-----|------:|----------------|-----:|-----------|---|-----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.9469|± |0.0062| | | |strict-match | 5|exact_match|↑ |0.9462|± |0.0062| |-----|------:|----------------|-----:|-----------|---|-----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.9424|± |0.0064| | | |strict-match | 5|exact_match|↑ |0.9401|± |0.0065| |-----|------:|----------------|-----:|-----------|---|-----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.9454|± |0.0063| | | |strict-match | 5|exact_match|↑ |0.9454|± |0.0063| |-----|------:|----------------|-----:|-----------|---|-----:|---|-----:| |Avg: | 3|flexible-extract| 5|exact_match|↑ |0.9449|± |0.0036| | | |strict-match | 5|exact_match|↑ |0.9439|± |0.0037| #### Quantized |Tasks|Version| Filter |n-shot| Metric | |Value | |Stderr| |-----|------:|----------------|-----:|-----------|---|-----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.9431|± |0.0064| | | |strict-match | 5|exact_match|↑ |0.9393|± |0.0066| |-----|------:|----------------|-----:|-----------|---|-----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.9538|± |0.0058| | | |strict-match | 5|exact_match|↑ |0.9500|± |0.0060| |-----|------:|----------------|-----:|-----------|---|-----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.9477|± |0.0061| | | |strict-match | 5|exact_match|↑ |0.9462|± |0.0062| |-----|------:|----------------|-----:|-----------|---|-----:|---|-----:| |Avg. | 3|flexible-extract| 5|exact_match|↑ |0.9482|± |0.0035| | | |strict-match | 5|exact_match|↑ |0.9452|± |0.0036| ### simple-evals (10x50 Samples each) Using custom fork of OpenAI's simple-evals benchmark suite: https://github.com/Ithanil/simple-evals/tree/custom These were run using the chat template as well as Nvidias suggested settings: - Reasoning Off: Greedy (`temperature=0`), system prompt: `detailed thinking off` - Reasoning On: `temperature=0.6`, `top_p=0.95`, system prompt: `detailed thinking on` #### Original (Reasoning Off) | Benchmark | Average Score | Standard Error | |-------------|-----------------|------------------| | DROP (F1) | 92.6556 | 0.711437 | | GPQA | 43.2 | 2.04831 | | HumanEval | 85.6 | 0.37238 | | MGSM | 90.9091 | 1.40836 | | MMLU | 84.6 | 0.6 | #### Quantized (Reasoning Off) | Benchmark | Average Score | Standard Error | |-------------|-----------------|------------------| | DROP (F1) | 91.2381 | 0.843284 | | GPQA | 43.2 | 0.997775 | | HumanEval | 85.08 | 0.430194 | | MGSM | 92.9091 | 0.994013 | | MMLU | 82.8 | 1.04137 | i.e. all quantized evals are within statistical error of original model's evals. #### Quantized (Reasoning On) For completeness, here also results for **Reasoning ON**: | Benchmark | Average Score | Standard Error | |-------------|-----------------|------------------| | DROP (F1) | 89.8326 | 1.14615 | | GPQA | 61.2 | 1.81842 | | HumanEval | 93 | 0.181353 | | MGSM | 94.9091 | 0.931048 | | MMLU | 85.2 | 0.8 |