JH-C-k commited on
Commit
63a5e8a
·
verified ·
1 Parent(s): 8d68508

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +17 -0
  2. beit/microsoft/beit-base-patch16-224-pt22k/.gitattributes +19 -0
  3. beit/microsoft/beit-base-patch16-224-pt22k/README.md +100 -0
  4. beit/microsoft/beit-base-patch16-224-pt22k/config.json +28 -0
  5. beit/microsoft/beit-base-patch16-224-pt22k/flax_model.msgpack +3 -0
  6. beit/microsoft/beit-base-patch16-224-pt22k/model.safetensors +3 -0
  7. beit/microsoft/beit-base-patch16-224-pt22k/preprocessor_config.json +19 -0
  8. beit/microsoft/beit-base-patch16-224-pt22k/pytorch_model.bin +3 -0
  9. beit/microsoft/beit-large-patch16-224-pt22k/.gitattributes +19 -0
  10. beit/microsoft/beit-large-patch16-224-pt22k/README.md +100 -0
  11. beit/microsoft/beit-large-patch16-224-pt22k/config.json +28 -0
  12. beit/microsoft/beit-large-patch16-224-pt22k/flax_model.msgpack +3 -0
  13. beit/microsoft/beit-large-patch16-224-pt22k/model.safetensors +3 -0
  14. beit/microsoft/beit-large-patch16-224-pt22k/preprocessor_config.json +19 -0
  15. beit/microsoft/beit-large-patch16-224-pt22k/pytorch_model.bin +3 -0
  16. clip/apple/DFN2B-CLIP-ViT-B-16/.gitattributes +35 -0
  17. clip/apple/DFN2B-CLIP-ViT-B-16/LICENSE +88 -0
  18. clip/apple/DFN2B-CLIP-ViT-B-16/README.md +111 -0
  19. clip/apple/DFN2B-CLIP-ViT-B-16/eval_results.jsonl +40 -0
  20. clip/apple/DFN2B-CLIP-ViT-B-16/merges.txt +0 -0
  21. clip/apple/DFN2B-CLIP-ViT-B-16/open_clip_config.json +30 -0
  22. clip/apple/DFN2B-CLIP-ViT-B-16/open_clip_pytorch_model.bin +3 -0
  23. clip/apple/DFN2B-CLIP-ViT-B-16/preprocessor_config.json +19 -0
  24. clip/apple/DFN2B-CLIP-ViT-B-16/special_tokens_map.json +24 -0
  25. clip/apple/DFN2B-CLIP-ViT-B-16/tokenizer.json +0 -0
  26. clip/apple/DFN2B-CLIP-ViT-B-16/tokenizer_config.json +34 -0
  27. clip/apple/DFN2B-CLIP-ViT-B-16/vocab.json +0 -0
  28. clip/apple/DFN2B-CLIP-ViT-L-14/.gitattributes +35 -0
  29. clip/apple/DFN2B-CLIP-ViT-L-14/LICENSE +88 -0
  30. clip/apple/DFN2B-CLIP-ViT-L-14/README.md +110 -0
  31. clip/apple/DFN2B-CLIP-ViT-L-14/config.json +165 -0
  32. clip/apple/DFN2B-CLIP-ViT-L-14/eval_results.jsonl +40 -0
  33. clip/apple/DFN2B-CLIP-ViT-L-14/merges.txt +0 -0
  34. clip/apple/DFN2B-CLIP-ViT-L-14/open_clip_config.json +31 -0
  35. clip/apple/DFN2B-CLIP-ViT-L-14/open_clip_pytorch_model.bin +3 -0
  36. clip/apple/DFN2B-CLIP-ViT-L-14/preprocessor_config.json +28 -0
  37. clip/apple/DFN2B-CLIP-ViT-L-14/pytorch_model.bin +3 -0
  38. clip/apple/DFN2B-CLIP-ViT-L-14/special_tokens_map.json +24 -0
  39. clip/apple/DFN2B-CLIP-ViT-L-14/tokenizer.json +0 -0
  40. clip/apple/DFN2B-CLIP-ViT-L-14/tokenizer_config.json +34 -0
  41. clip/apple/DFN2B-CLIP-ViT-L-14/vocab.json +0 -0
  42. clip/apple/DFN5B-CLIP-ViT-H-14/eval_results.jsonl +40 -0
  43. clip/apple/DFN5B-CLIP-ViT-H-14/open_clip_pytorch_model.bin +3 -0
  44. clip/apple/DFN5B-CLIP-ViT-H-14/preprocessor_config.json +28 -0
  45. clip/apple/DFN5B-CLIP-ViT-H-14/pytorch_model.bin +3 -0
  46. clip/facebook/metaclip-b16-400m/metaclip_b16_400m.bin +3 -0
  47. clip/facebook/metaclip-b16-400m/pytorch_model.bin +3 -0
  48. clip/facebook/metaclip-b16-fullcc2.5b/metaclip_b16_fullcc2.5b.bin +3 -0
  49. clip/facebook/metaclip-b16-fullcc2.5b/pytorch_model.bin +3 -0
  50. clip/facebook/metaclip-b32-400m/metaclip_b32_400m.bin +3 -0
.gitattributes CHANGED
@@ -33,3 +33,20 @@ clip/laion/CLIP-ViT-B-32-laion2B-s34B-b79K/open_clip_model.safetensors filter=lf
33
  clip/laion/CLIP-ViT-B-32-laion2B-s34B-b79K/model.safetensors filter=lfs diff=lfs merge=lfs -text
34
  clip/facebook/metaclip-g14-fullcc2.5b/model-00003-of-00003.safetensors filter=lfs diff=lfs merge=lfs -text
35
  clip/laion/CLIP-ViT-L-14-laion2B-s32B-b82K/open_clip_pytorch_model.safetensors filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  clip/laion/CLIP-ViT-B-32-laion2B-s34B-b79K/model.safetensors filter=lfs diff=lfs merge=lfs -text
34
  clip/facebook/metaclip-g14-fullcc2.5b/model-00003-of-00003.safetensors filter=lfs diff=lfs merge=lfs -text
35
  clip/laion/CLIP-ViT-L-14-laion2B-s32B-b82K/open_clip_pytorch_model.safetensors filter=lfs diff=lfs merge=lfs -text
36
+ clip/openai/clip-vit-large-patch14/model.safetensors filter=lfs diff=lfs merge=lfs -text
37
+ beit/microsoft/beit-base-patch16-224-pt22k/model.safetensors filter=lfs diff=lfs merge=lfs -text
38
+ beit/microsoft/beit-large-patch16-224-pt22k/model.safetensors filter=lfs diff=lfs merge=lfs -text
39
+ clip/facebook/metaclip-g14-fullcc2.5b/open_clip_model.safetensors filter=lfs diff=lfs merge=lfs -text
40
+ clip/laion/CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_model.safetensors filter=lfs diff=lfs merge=lfs -text
41
+ clip/laion/CLIP-ViT-H-14-laion2B-s32B-b79K/model.safetensors filter=lfs diff=lfs merge=lfs -text
42
+ clip/google/siglip-so400m-patch14-224/model.safetensors filter=lfs diff=lfs merge=lfs -text
43
+ clip/google/siglip-large-patch16-256/model.safetensors filter=lfs diff=lfs merge=lfs -text
44
+ clip/laion/CLIP-ViT-L-14-laion2B-s32B-b82K/model.safetensors filter=lfs diff=lfs merge=lfs -text
45
+ clip/facebook/metaclip-h14-alt/model.safetensors filter=lfs diff=lfs merge=lfs -text
46
+ clip/facebook/metaclip-h14-fullcc2.5b/model.safetensors filter=lfs diff=lfs merge=lfs -text
47
+ clip/google/siglip2-so400m-patch14-224/model.safetensors filter=lfs diff=lfs merge=lfs -text
48
+ clip/facebook/metaclip-h14-alt/open_clip_model.safetensors filter=lfs diff=lfs merge=lfs -text
49
+ clip/facebook/metaclip-g14-fullcc2.5b/model-00001-of-00003.safetensors filter=lfs diff=lfs merge=lfs -text
50
+ clip/facebook/metaclip-g14-fullcc2.5b/model-00002-of-00003.safetensors filter=lfs diff=lfs merge=lfs -text
51
+ clip/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/pytorch_model-00001-of-00002.safetensors filter=lfs diff=lfs merge=lfs -text
52
+ clip/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/open_clip_model.safetensors filter=lfs diff=lfs merge=lfs -text
beit/microsoft/beit-base-patch16-224-pt22k/.gitattributes ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
2
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.h5 filter=lfs diff=lfs merge=lfs -text
5
+ *.tflite filter=lfs diff=lfs merge=lfs -text
6
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.ot filter=lfs diff=lfs merge=lfs -text
8
+ *.onnx filter=lfs diff=lfs merge=lfs -text
9
+ *.arrow filter=lfs diff=lfs merge=lfs -text
10
+ *.ftz filter=lfs diff=lfs merge=lfs -text
11
+ *.joblib filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.pb filter=lfs diff=lfs merge=lfs -text
15
+ *.pt filter=lfs diff=lfs merge=lfs -text
16
+ *.pth filter=lfs diff=lfs merge=lfs -text
17
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
18
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
19
+ model.safetensors filter=lfs diff=lfs merge=lfs -text
beit/microsoft/beit-base-patch16-224-pt22k/README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - image-classification
5
+ - vision
6
+ datasets:
7
+ - imagenet
8
+ - imagenet-21k
9
+ ---
10
+
11
+ # BEiT (base-sized model, pre-trained only)
12
+
13
+ BEiT model pre-trained in a self-supervised fashion on ImageNet-22k - also called ImageNet-21k (14 million images, 21,841 classes) at resolution 224x224. It was introduced in the paper [BEIT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong and Furu Wei and first released in [this repository](https://github.com/microsoft/unilm/tree/master/beit).
14
+
15
+ Disclaimer: The team releasing BEiT did not write a model card for this model so this model card has been written by the Hugging Face team.
16
+
17
+ ## Model description
18
+
19
+ The BEiT model is a Vision Transformer (ViT), which is a transformer encoder model (BERT-like). In contrast to the original ViT model, BEiT is pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. The pre-training objective for the model is to predict visual tokens from the encoder of OpenAI's DALL-E's VQ-VAE, based on masked patches.
20
+
21
+ Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. Contrary to the original ViT models, BEiT models do use relative position embeddings (similar to T5) instead of absolute position embeddings, and perform classification of images by mean-pooling the final hidden states of the patches, instead of placing a linear layer on top of the final hidden state of the [CLS] token.
22
+
23
+ By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. Alternatively, one can mean-pool the final hidden states of the patch embeddings, and place a linear layer on top of that.
24
+
25
+ ## Intended uses & limitations
26
+
27
+ You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=microsoft/beit) to look for
28
+ fine-tuned versions on a task that interests you.
29
+
30
+ ### How to use
31
+
32
+ Here is how to use this model:
33
+
34
+ ```python
35
+ from transformers import BeitFeatureExtractor, BeitForMaskedImageModeling
36
+ from PIL import Image
37
+ import requests
38
+
39
+ url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
40
+ image = Image.open(requests.get(url, stream=True).raw)
41
+
42
+ feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224-pt22k')
43
+ model = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k')
44
+
45
+ inputs = feature_extractor(images=image, return_tensors="pt")
46
+ outputs = model(**inputs)
47
+ logits = outputs.logits
48
+ ```
49
+
50
+ Currently, both the feature extractor and model support PyTorch.
51
+
52
+ ## Training data
53
+
54
+ The BEiT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes.
55
+
56
+ ## Training procedure
57
+
58
+ ### Preprocessing
59
+
60
+ The exact details of preprocessing of images during training/validation can be found [here](https://github.com/microsoft/unilm/blob/master/beit/datasets.py).
61
+
62
+ Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).
63
+
64
+ ### Pretraining
65
+
66
+ For all pre-training related hyperparameters, we refer to page 15 of the [original paper](https://arxiv.org/abs/2106.08254).
67
+
68
+ ## Evaluation results
69
+
70
+ For evaluation results on several image classification benchmarks, we refer to tables 1 and 2 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution. Of course, increasing the model size will result in better performance.
71
+
72
+ ### BibTeX entry and citation info
73
+
74
+ ```@article{DBLP:journals/corr/abs-2106-08254,
75
+ author = {Hangbo Bao and
76
+ Li Dong and
77
+ Furu Wei},
78
+ title = {BEiT: {BERT} Pre-Training of Image Transformers},
79
+ journal = {CoRR},
80
+ volume = {abs/2106.08254},
81
+ year = {2021},
82
+ url = {https://arxiv.org/abs/2106.08254},
83
+ archivePrefix = {arXiv},
84
+ eprint = {2106.08254},
85
+ timestamp = {Tue, 29 Jun 2021 16:55:04 +0200},
86
+ biburl = {https://dblp.org/rec/journals/corr/abs-2106-08254.bib},
87
+ bibsource = {dblp computer science bibliography, https://dblp.org}
88
+ }
89
+ ```
90
+
91
+ ```bibtex
92
+ @inproceedings{deng2009imagenet,
93
+ title={Imagenet: A large-scale hierarchical image database},
94
+ author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li},
95
+ booktitle={2009 IEEE conference on computer vision and pattern recognition},
96
+ pages={248--255},
97
+ year={2009},
98
+ organization={Ieee}
99
+ }
100
+ ```
beit/microsoft/beit-base-patch16-224-pt22k/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BeitForMaskedImageModeling"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.0,
6
+ "drop_path_rate": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.0,
9
+ "hidden_size": 768,
10
+ "image_size": 224,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "layer_scale_init_value": 0.1,
15
+ "model_type": "beit",
16
+ "num_attention_heads": 12,
17
+ "num_channels": 3,
18
+ "num_hidden_layers": 12,
19
+ "patch_size": 16,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.11.0.dev0",
22
+ "use_absolute_position_embeddings": false,
23
+ "use_mask_token": true,
24
+ "use_mean_pooling": true,
25
+ "use_relative_position_bias": false,
26
+ "use_shared_relative_position_bias": true,
27
+ "vocab_size": 8192
28
+ }
beit/microsoft/beit-base-patch16-224-pt22k/flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:992202b28ad4d6f77a846849e498a6a634af5d8e92619ad78afb358c8e8084d1
3
+ size 367870927
beit/microsoft/beit-base-patch16-224-pt22k/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18b08989cad41adba4900055a11899c5d28b1d22b1fd5198c126eb2007ea000e
3
+ size 368198186
beit/microsoft/beit-base-patch16-224-pt22k/preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 224,
3
+ "do_center_crop": false,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "BeitFeatureExtractor",
7
+ "image_mean": [
8
+ 0.5,
9
+ 0.5,
10
+ 0.5
11
+ ],
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "resample": 2,
18
+ "size": 224
19
+ }
beit/microsoft/beit-base-patch16-224-pt22k/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:284cc1c178af57275ef00cbd188a1ee9026091b6eb582aa44e043a37a743a70b
3
+ size 368254997
beit/microsoft/beit-large-patch16-224-pt22k/.gitattributes ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
2
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.h5 filter=lfs diff=lfs merge=lfs -text
5
+ *.tflite filter=lfs diff=lfs merge=lfs -text
6
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.ot filter=lfs diff=lfs merge=lfs -text
8
+ *.onnx filter=lfs diff=lfs merge=lfs -text
9
+ *.arrow filter=lfs diff=lfs merge=lfs -text
10
+ *.ftz filter=lfs diff=lfs merge=lfs -text
11
+ *.joblib filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.pb filter=lfs diff=lfs merge=lfs -text
15
+ *.pt filter=lfs diff=lfs merge=lfs -text
16
+ *.pth filter=lfs diff=lfs merge=lfs -text
17
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
18
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
19
+ model.safetensors filter=lfs diff=lfs merge=lfs -text
beit/microsoft/beit-large-patch16-224-pt22k/README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - image-classification
5
+ - vision
6
+ datasets:
7
+ - imagenet
8
+ - imagenet-21k
9
+ ---
10
+
11
+ # BEiT (large-sized model, pre-trained only)
12
+
13
+ BEiT model pre-trained in a self-supervised fashion on ImageNet-22k - also called ImageNet-21k (14 million images, 21,841 classes) at resolution 224x224. It was introduced in the paper [BEIT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong and Furu Wei and first released in [this repository](https://github.com/microsoft/unilm/tree/master/beit).
14
+
15
+ Disclaimer: The team releasing BEiT did not write a model card for this model so this model card has been written by the Hugging Face team.
16
+
17
+ ## Model description
18
+
19
+ The BEiT model is a Vision Transformer (ViT), which is a transformer encoder model (BERT-like). In contrast to the original ViT model, BEiT is pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. The pre-training objective for the model is to predict visual tokens from the encoder of OpenAI's DALL-E's VQ-VAE, based on masked patches.
20
+
21
+ Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. Contrary to the original ViT models, BEiT models do use relative position embeddings (similar to T5) instead of absolute position embeddings, and perform classification of images by mean-pooling the final hidden states of the patches, instead of placing a linear layer on top of the final hidden state of the [CLS] token.
22
+
23
+ By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. Alternatively, one can mean-pool the final hidden states of the patch embeddings, and place a linear layer on top of that.
24
+
25
+ ## Intended uses & limitations
26
+
27
+ You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=microsoft/beit) to look for
28
+ fine-tuned versions on a task that interests you.
29
+
30
+ ### How to use
31
+
32
+ Here is how to use this model:
33
+
34
+ ```python
35
+ from transformers import BeitFeatureExtractor, BeitForMaskedImageModeling
36
+ from PIL import Image
37
+ import requests
38
+
39
+ url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
40
+ image = Image.open(requests.get(url, stream=True).raw)
41
+
42
+ feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-large-patch16-224-pt22k')
43
+ model = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-large-patch16-224-pt22k')
44
+
45
+ inputs = feature_extractor(images=image, return_tensors="pt")
46
+ outputs = model(**inputs)
47
+ logits = outputs.logits
48
+ ```
49
+
50
+ Currently, both the feature extractor and model support PyTorch.
51
+
52
+ ## Training data
53
+
54
+ The BEiT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes.
55
+
56
+ ## Training procedure
57
+
58
+ ### Preprocessing
59
+
60
+ The exact details of preprocessing of images during training/validation can be found [here](https://github.com/microsoft/unilm/blob/master/beit/datasets.py).
61
+
62
+ Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).
63
+
64
+ ### Pretraining
65
+
66
+ For all pre-training related hyperparameters, we refer to page 15 of the [original paper](https://arxiv.org/abs/2106.08254).
67
+
68
+ ## Evaluation results
69
+
70
+ For evaluation results on several image classification benchmarks, we refer to tables 1 and 2 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution. Of course, increasing the model size will result in better performance.
71
+
72
+ ### BibTeX entry and citation info
73
+
74
+ ```@article{DBLP:journals/corr/abs-2106-08254,
75
+ author = {Hangbo Bao and
76
+ Li Dong and
77
+ Furu Wei},
78
+ title = {BEiT: {BERT} Pre-Training of Image Transformers},
79
+ journal = {CoRR},
80
+ volume = {abs/2106.08254},
81
+ year = {2021},
82
+ url = {https://arxiv.org/abs/2106.08254},
83
+ archivePrefix = {arXiv},
84
+ eprint = {2106.08254},
85
+ timestamp = {Tue, 29 Jun 2021 16:55:04 +0200},
86
+ biburl = {https://dblp.org/rec/journals/corr/abs-2106-08254.bib},
87
+ bibsource = {dblp computer science bibliography, https://dblp.org}
88
+ }
89
+ ```
90
+
91
+ ```bibtex
92
+ @inproceedings{deng2009imagenet,
93
+ title={Imagenet: A large-scale hierarchical image database},
94
+ author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li},
95
+ booktitle={2009 IEEE conference on computer vision and pattern recognition},
96
+ pages={248--255},
97
+ year={2009},
98
+ organization={Ieee}
99
+ }
100
+ ```
beit/microsoft/beit-large-patch16-224-pt22k/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BeitForMaskedImageModeling"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.0,
6
+ "drop_path_rate": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.0,
9
+ "hidden_size": 1024,
10
+ "image_size": 224,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "layer_scale_init_value": 0.1,
15
+ "model_type": "beit",
16
+ "num_attention_heads": 16,
17
+ "num_channels": 3,
18
+ "num_hidden_layers": 24,
19
+ "patch_size": 16,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.11.0.dev0",
22
+ "use_absolute_position_embeddings": false,
23
+ "use_mask_token": true,
24
+ "use_mean_pooling": true,
25
+ "use_relative_position_bias": false,
26
+ "use_shared_relative_position_bias": true,
27
+ "vocab_size": 8192
28
+ }
beit/microsoft/beit-large-patch16-224-pt22k/flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:790333e0495827b2375db293914e141498e3ca259ff9da1edca29a6ff6b20ab9
3
+ size 1246151329
beit/microsoft/beit-large-patch16-224-pt22k/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed81d0faf9f905c2eeee043a77976f997f9249c6fcda57172660ffb48a88d939
3
+ size 1246495686
beit/microsoft/beit-large-patch16-224-pt22k/preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 224,
3
+ "do_center_crop": false,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "BeitFeatureExtractor",
7
+ "image_mean": [
8
+ 0.5,
9
+ 0.5,
10
+ 0.5
11
+ ],
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "resample": 2,
18
+ "size": 224
19
+ }
beit/microsoft/beit-large-patch16-224-pt22k/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7e36e4e7e4b59c8713e27b17133381b2a9476dd4cec8a05392ca71c5be4abb7
3
+ size 1246607101
clip/apple/DFN2B-CLIP-ViT-B-16/.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
clip/apple/DFN2B-CLIP-ViT-B-16/LICENSE ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Disclaimer: IMPORTANT: This Apple Machine Learning Research Model is
2
+ specifically developed and released by Apple Inc. ("Apple") for the sole purpose
3
+ of scientific research of artificial intelligence and machine-learning
4
+ technology. “Apple Machine Learning Research Model” means the model, including
5
+ but not limited to algorithms, formulas, trained model weights, parameters,
6
+ configurations, checkpoints, and any related materials (including
7
+ documentation).
8
+
9
+ This Apple Machine Learning Research Model is provided to You by
10
+ Apple in consideration of your agreement to the following terms, and your use,
11
+ modification, creation of Model Derivatives, and or redistribution of the Apple
12
+ Machine Learning Research Model constitutes acceptance of this Agreement. If You
13
+ do not agree with these terms, please do not use, modify, create Model
14
+ Derivatives of, or distribute this Apple Machine Learning Research Model or
15
+ Model Derivatives.
16
+
17
+ * License Scope: In consideration of your agreement to abide by the following
18
+ terms, and subject to these terms, Apple hereby grants you a personal,
19
+ non-exclusive, worldwide, non-transferable, royalty-free, revocable, and
20
+ limited license, to use, copy, modify, distribute, and create Model
21
+ Derivatives (defined below) of the Apple Machine Learning Research Model
22
+ exclusively for Research Purposes. You agree that any Model Derivatives You
23
+ may create or that may be created for You will be limited to Research Purposes
24
+ as well. “Research Purposes” means non-commercial scientific research and
25
+ academic development activities, such as experimentation, analysis, testing
26
+ conducted by You with the sole intent to advance scientific knowledge and
27
+ research. “Research Purposes” does not include any commercial exploitation,
28
+ product development or use in any commercial product or service.
29
+
30
+ * Distribution of Apple Machine Learning Research Model and Model Derivatives:
31
+ If you choose to redistribute Apple Machine Learning Research Model or its
32
+ Model Derivatives, you must provide a copy of this Agreement to such third
33
+ party, and ensure that the following attribution notice be provided: “Apple
34
+ Machine Learning Research Model is licensed under the Apple Machine Learning
35
+ Research Model License Agreement.” Additionally, all Model Derivatives must
36
+ clearly be identified as such, including disclosure of modifications and
37
+ changes made to the Apple Machine Learning Research Model. The name,
38
+ trademarks, service marks or logos of Apple may not be used to endorse or
39
+ promote Model Derivatives or the relationship between You and Apple. “Model
40
+ Derivatives” means any models or any other artifacts created by modifications,
41
+ improvements, adaptations, alterations to the architecture, algorithm or
42
+ training processes of the Apple Machine Learning Research Model, or by any
43
+ retraining, fine-tuning of the Apple Machine Learning Research Model.
44
+
45
+ * No Other License: Except as expressly stated in this notice, no other rights
46
+ or licenses, express or implied, are granted by Apple herein, including but
47
+ not limited to any patent, trademark, and similar intellectual property rights
48
+ worldwide that may be infringed by the Apple Machine Learning Research Model,
49
+ the Model Derivatives or by other works in which the Apple Machine Learning
50
+ Research Model may be incorporated.
51
+
52
+ * Compliance with Laws: Your use of Apple Machine Learning Research Model must
53
+ be in compliance with all applicable laws and regulations.
54
+
55
+ * Term and Termination: The term of this Agreement will begin upon your
56
+ acceptance of this Agreement or use of the Apple Machine Learning Research
57
+ Model and will continue until terminated in accordance with the following
58
+ terms. Apple may terminate this Agreement at any time if You are in breach of
59
+ any term or condition of this Agreement. Upon termination of this Agreement,
60
+ You must cease to use all Apple Machine Learning Research Models and Model
61
+ Derivatives and permanently delete any copy thereof. Sections 3, 6 and 7 will
62
+ survive termination.
63
+
64
+ * Disclaimer and Limitation of Liability: This Apple Machine Learning Research
65
+ Model and any outputs generated by the Apple Machine Learning Research Model
66
+ are provided on an “AS IS” basis. APPLE MAKES NO WARRANTIES, EXPRESS OR
67
+ IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
68
+ NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
69
+ REGARDING THE APPLE MACHINE LEARNING RESEARCH MODEL OR OUTPUTS GENERATED BY
70
+ THE APPLE MACHINE LEARNING RESEARCH MODEL. You are solely responsible for
71
+ determining the appropriateness of using or redistributing the Apple Machine
72
+ Learning Research Model and any outputs of the Apple Machine Learning Research
73
+ Model and assume any risks associated with Your use of the Apple Machine
74
+ Learning Research Model and any output and results. IN NO EVENT SHALL APPLE BE
75
+ LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
76
+ IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF
77
+ THE APPLE MACHINE LEARNING RESEARCH MODEL AND ANY OUTPUTS OF THE APPLE MACHINE
78
+ LEARNING RESEARCH MODEL, HOWEVER CAUSED AND WHETHER UNDER THEORY OF CONTRACT,
79
+ TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS
80
+ BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
81
+
82
+ * Governing Law: This Agreement will be governed by and construed under the laws
83
+ of the State of California without regard to its choice of law principles. The
84
+ Convention on Contracts for the International Sale of Goods shall not apply to
85
+ the Agreement except that the arbitration clause and any arbitration hereunder
86
+ shall be governed by the Federal Arbitration Act, Chapters 1 and 2. 
87
+
88
+ Copyright (C) 2025 Apple Inc. All Rights Reserved.
clip/apple/DFN2B-CLIP-ViT-B-16/README.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apple-amlr
3
+ license_name: apple-sample-code-license
4
+ license_link: LICENSE
5
+ ---
6
+
7
+
8
+
9
+ A CLIP (Contrastive Language-Image Pre-training) model trained on DFN-2B.
10
+ Data Filtering Networks (DFNs) are small networks used to automatically filter large pools of uncurated data.
11
+ This model was trained on 2B images that were filtered from a pool of 12.8B uncurated image-text pairs
12
+ (12.8B image-text pairs from CommonPool-12.8B).
13
+
14
+ These weights are directly usable in OpenCLIP (image + text).
15
+
16
+
17
+ ## Model Details
18
+
19
+ - **Model Type:** Contrastive Image-Text, Zero-Shot Image Classification.
20
+ - **Dataset:** DFN-2b
21
+ - **Papers:**
22
+ - Data Filtering Networks: https://arxiv.org/abs/2309.17425
23
+ - **Examples Seen:** 12.8B
24
+
25
+
26
+ ## Model Metrics
27
+ | Dataset | Metric |
28
+ |:-----------------------|---------:|
29
+ | ImageNet 1k | 0.76236 |
30
+ | Caltech-101 | 0.942894 |
31
+ | CIFAR-10 | 0.9672 |
32
+ | CIFAR-100 | 0.8347 |
33
+ | CLEVR Counts | 0.232333 |
34
+ | CLEVR Distance | 0.245267 |
35
+ | Country211 | 0.19545 |
36
+ | Describable Textures | 0.575532 |
37
+ | EuroSAT | 0.54 |
38
+ | FGVC Aircraft | 0.248503 |
39
+ | Food-101 | 0.91303 |
40
+ | GTSRB | 0.469913 |
41
+ | ImageNet Sketch | 0.620684 |
42
+ | ImageNet v2 | 0.682 |
43
+ | ImageNet-A | 0.482133 |
44
+ | ImageNet-O | 0.493 |
45
+ | ImageNet-R | 0.830967 |
46
+ | KITTI Vehicle Distance | 0.192686 |
47
+ | MNIST | 0.782 |
48
+ | ObjectNet | 0.631851 |
49
+ | Oxford Flowers-102 | 0.819895 |
50
+ | Oxford-IIIT Pet | 0.936907 |
51
+ | Pascal VOC 2007 | 0.788528 |
52
+ | PatchCamelyon | 0.521545 |
53
+ | Rendered SST2 | 0.486546 |
54
+ | RESISC45 | 0.61381 |
55
+ | Stanford Cars | 0.90735 |
56
+ | STL-10 | 0.97525 |
57
+ | SUN397 | 0.714162 |
58
+ | SVHN | 0.598955 |
59
+ | Flickr | 0.7728 |
60
+ | MSCOCO | 0.518773 |
61
+ | WinoGAViL | 0.541748 |
62
+ | iWildCam | 0.155574 |
63
+ | Camelyon17 | 0.499283 |
64
+ | FMoW | 0.141149 |
65
+ | Dollar Street | 0.625 |
66
+ | GeoDE | 0.891023 |
67
+ | **Average** | **0.609232** |
68
+
69
+ ## Model Usage
70
+ ### With OpenCLIP
71
+ ```
72
+ import torch
73
+ import torch.nn.functional as F
74
+ from urllib.request import urlopen
75
+ from PIL import Image
76
+ from open_clip import create_model_from_pretrained, get_tokenizer
77
+
78
+ model, preprocess = create_model_from_pretrained('hf-hub:apple/DFN2B-CLIP-ViT-B-16')
79
+ tokenizer = get_tokenizer('ViT-B-16')
80
+
81
+ image = Image.open(urlopen(
82
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
83
+ ))
84
+ image = preprocess(image).unsqueeze(0)
85
+
86
+ labels_list = ["a dog", "a cat", "a donut", "a beignet"]
87
+ text = tokenizer(labels_list, context_length=model.context_length)
88
+
89
+ with torch.no_grad(), torch.cuda.amp.autocast():
90
+ image_features = model.encode_image(image)
91
+ text_features = model.encode_text(text)
92
+ image_features = F.normalize(image_features, dim=-1)
93
+ text_features = F.normalize(text_features, dim=-1)
94
+
95
+ text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)
96
+
97
+ zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]]))
98
+ print("Label probabilities: ", zipped_list)
99
+ ```
100
+
101
+ ## Citation
102
+ ```bibtex
103
+ @article{fang2023data,
104
+ title={Data Filtering Networks},
105
+ author={Fang, Alex and Jose, Albin Madappally and Jain, Amit and Schmidt, Ludwig and Toshev, Alexander and Shankar, Vaishaal},
106
+ journal={arXiv preprint arXiv:2309.17425},
107
+ year={2023}
108
+ }
109
+
110
+ ```
111
+
clip/apple/DFN2B-CLIP-ViT-B-16/eval_results.jsonl ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"key": "imagenet1k", "dataset": "ImageNet 1k", "metrics": {"acc1": 0.76236, "acc5": 0.94602, "mean_per_class_recall": 0.7625, "main_metric": 0.76236}}
2
+ {"key": "vtab/caltech101", "dataset": "Caltech-101", "metrics": {"acc1": 0.8491372226787182, "acc5": 0.9479046836483155, "mean_per_class_recall": 0.9428944730514909, "main_metric": 0.9428944730514909}}
3
+ {"key": "cifar10", "dataset": "CIFAR-10", "metrics": {"acc1": 0.9672, "acc5": 0.9996, "mean_per_class_recall": 0.9671999999999998, "main_metric": 0.9672}}
4
+ {"key": "vtab/cifar100", "dataset": "CIFAR-100", "metrics": {"acc1": 0.8347, "acc5": 0.9718, "mean_per_class_recall": 0.8347000000000001, "main_metric": 0.8347}}
5
+ {"key": "vtab/clevr_count_all", "dataset": "CLEVR Counts", "metrics": {"acc1": 0.23233333333333334, "acc5": 0.8664, "mean_per_class_recall": 0.23372915568843933, "main_metric": 0.23233333333333334}}
6
+ {"key": "vtab/clevr_closest_object_distance", "dataset": "CLEVR Distance", "metrics": {"acc1": 0.24526666666666666, "acc5": 0.9186666666666666, "mean_per_class_recall": 0.16711260731376074, "main_metric": 0.24526666666666666}}
7
+ {"key": "country211", "dataset": "Country211", "metrics": {"acc1": 0.19545023696682465, "acc5": 0.415260663507109, "mean_per_class_recall": 0.19545023696682462, "main_metric": 0.19545023696682465}}
8
+ {"key": "vtab/dtd", "dataset": "Describable Textures", "metrics": {"acc1": 0.575531914893617, "acc5": 0.8914893617021277, "mean_per_class_recall": 0.575531914893617, "main_metric": 0.575531914893617}}
9
+ {"key": "vtab/eurosat", "dataset": "EuroSAT", "metrics": {"acc1": 0.54, "acc5": 0.957962962962963, "mean_per_class_recall": 0.5559610506168461, "main_metric": 0.54}}
10
+ {"key": "fgvc_aircraft", "dataset": "FGVC Aircraft", "metrics": {"acc1": 0.24902490249024903, "acc5": 0.5727572757275727, "mean_per_class_recall": 0.24850267379679145, "main_metric": 0.24850267379679145}}
11
+ {"key": "food101", "dataset": "Food-101", "metrics": {"acc1": 0.9130297029702971, "acc5": 0.988, "mean_per_class_recall": 0.9130297029702971, "main_metric": 0.9130297029702971}}
12
+ {"key": "gtsrb", "dataset": "GTSRB", "metrics": {"acc1": 0.46991290577988915, "acc5": 0.7560570071258907, "mean_per_class_recall": 0.4815686220961752, "main_metric": 0.46991290577988915}}
13
+ {"key": "imagenet_sketch", "dataset": "ImageNet Sketch", "metrics": {"acc1": 0.6206842343138989, "acc5": 0.8517754328047319, "mean_per_class_recall": 0.6207807843137254, "main_metric": 0.6206842343138989}}
14
+ {"key": "imagenetv2", "dataset": "ImageNet v2", "metrics": {"acc1": 0.682, "acc5": 0.9033, "mean_per_class_recall": 0.6822, "main_metric": 0.682}}
15
+ {"key": "imagenet-a", "dataset": "ImageNet-A", "metrics": {"acc1": 0.48213333333333336, "acc5": 0.7836, "mean_per_class_recall": 0.4535268702732058, "main_metric": 0.48213333333333336}}
16
+ {"key": "imagenet-o", "dataset": "ImageNet-O", "metrics": {"acc1": 0.493, "acc5": 0.803, "mean_per_class_recall": 0.5078972496629617, "main_metric": 0.493}}
17
+ {"key": "imagenet-r", "dataset": "ImageNet-R", "metrics": {"acc1": 0.8309666666666666, "acc5": 0.9468333333333333, "mean_per_class_recall": 0.8192261619836506, "main_metric": 0.8309666666666666}}
18
+ {"key": "vtab/kitti_closest_vehicle_distance", "dataset": "KITTI Vehicle Distance", "metrics": {"acc1": 0.19268635724331926, "acc5": null, "mean_per_class_recall": 0.28871520578478127, "main_metric": 0.19268635724331926}}
19
+ {"key": "mnist", "dataset": "MNIST", "metrics": {"acc1": 0.782, "acc5": 0.9572, "mean_per_class_recall": 0.7795341172559064, "main_metric": 0.782}}
20
+ {"key": "objectnet", "dataset": "ObjectNet", "metrics": {"acc1": 0.6318509744804566, "acc5": 0.8376224830408098, "mean_per_class_recall": 0.6246357049000781, "main_metric": 0.6318509744804566}}
21
+ {"key": "vtab/flowers", "dataset": "Oxford Flowers-102", "metrics": {"acc1": 0.8202959830866807, "acc5": 0.9440559440559441, "mean_per_class_recall": 0.8198953761537138, "main_metric": 0.8198953761537138}}
22
+ {"key": "vtab/pets", "dataset": "Oxford-IIIT Pet", "metrics": {"acc1": 0.9375851730716817, "acc5": 0.9980921231943308, "mean_per_class_recall": 0.9369073208277425, "main_metric": 0.9369073208277425}}
23
+ {"key": "voc2007", "dataset": "Pascal VOC 2007", "metrics": {"acc1": 0.788528311965812, "acc5": 0.9667467948717948, "mean_per_class_recall": 0.8475232418475958, "main_metric": 0.788528311965812}}
24
+ {"key": "vtab/pcam", "dataset": "PatchCamelyon", "metrics": {"acc1": 0.52154541015625, "acc5": null, "mean_per_class_recall": 0.5213508663557188, "main_metric": 0.52154541015625}}
25
+ {"key": "renderedsst2", "dataset": "Rendered SST2", "metrics": {"acc1": 0.4865458539264141, "acc5": null, "mean_per_class_recall": 0.48710989520004633, "main_metric": 0.4865458539264141}}
26
+ {"key": "vtab/resisc45", "dataset": "RESISC45", "metrics": {"acc1": 0.6138095238095238, "acc5": 0.9230158730158731, "mean_per_class_recall": 0.6189966705005917, "main_metric": 0.6138095238095238}}
27
+ {"key": "cars", "dataset": "Stanford Cars", "metrics": {"acc1": 0.9073498321104341, "acc5": 0.9967665713219749, "mean_per_class_recall": 0.9076556443395778, "main_metric": 0.9073498321104341}}
28
+ {"key": "stl10", "dataset": "STL-10", "metrics": {"acc1": 0.97525, "acc5": 1.0, "mean_per_class_recall": 0.97525, "main_metric": 0.97525}}
29
+ {"key": "sun397", "dataset": "SUN397", "metrics": {"acc1": 0.7141622377107969, "acc5": 0.9500891921216691, "mean_per_class_recall": 0.7102133020117405, "main_metric": 0.7141622377107969}}
30
+ {"key": "vtab/svhn", "dataset": "SVHN", "metrics": {"acc1": 0.5989551321450522, "acc5": 0.9094575906576521, "mean_per_class_recall": 0.5707908766207674, "main_metric": 0.5989551321450522}}
31
+ {"key": "retrieval/flickr_1k_test_image_text_retrieval", "dataset": "Flickr", "metrics": {"image_retrieval_recall@1": 0.6905999779701233, "text_retrieval_recall@1": 0.8550000190734863, "image_retrieval_recall@5": 0.8981999754905701, "text_retrieval_recall@5": 0.9779999852180481, "image_retrieval_recall@10": 0.9404000043869019, "text_retrieval_recall@10": 0.9860000014305115, "mean_recall@1": 0.7727999985218048, "main_metric": 0.7727999985218048}}
32
+ {"key": "retrieval/mscoco_2014_5k_test_image_text_retrieval", "dataset": "MSCOCO", "metrics": {"image_retrieval_recall@1": 0.433946430683136, "text_retrieval_recall@1": 0.603600025177002, "image_retrieval_recall@5": 0.6924830079078674, "text_retrieval_recall@5": 0.8307999968528748, "image_retrieval_recall@10": 0.7881647348403931, "text_retrieval_recall@10": 0.8942000269889832, "mean_recall@1": 0.518773227930069, "main_metric": 0.518773227930069}}
33
+ {"key": "misc/winogavil", "dataset": "WinoGAViL", "metrics": {"avg_jaccard_score": 0.5853454151798244, "jaccard_score_5": 0.6058080808080808, "jaccard_score_6": 0.5927045836333094, "jaccard_score_10": 0.5508607198748043, "jaccard_score_12": 0.5326769025367156, "jaccard_score_5-6": 0.5990894549034084, "jaccard_score_10-12": 0.541747518679603, "main_metric": 0.541747518679603}}
34
+ {"key": "wilds/iwildcam", "dataset": "iWildCam", "metrics": {"acc1": 0.338575868757449, "acc5": 0.5861279240961884, "mean_per_class_recall": 0.18157055065011315, "acc_avg": 0.3389965295791626, "recall-macro_all": 0.18157055065011315, "F1-macro_all": 0.15557425888642093, "main_metric": 0.15557425888642093}}
35
+ {"key": "wilds/camelyon17", "dataset": "Camelyon17", "metrics": {"acc1": 0.499282808568674, "acc5": null, "mean_per_class_recall": 0.499282808568674, "acc_avg": 0.4992828071117401, "acc_slide:0": NaN, "count_slide:0": 0.0, "acc_slide:1": NaN, "count_slide:1": 0.0, "acc_slide:2": NaN, "count_slide:2": 0.0, "acc_slide:3": NaN, "count_slide:3": 0.0, "acc_slide:4": NaN, "count_slide:4": 0.0, "acc_slide:5": NaN, "count_slide:5": 0.0, "acc_slide:6": NaN, "count_slide:6": 0.0, "acc_slide:7": NaN, "count_slide:7": 0.0, "acc_slide:8": NaN, "count_slide:8": 0.0, "acc_slide:9": NaN, "count_slide:9": 0.0, "acc_slide:10": NaN, "count_slide:10": 0.0, "acc_slide:11": NaN, "count_slide:11": 0.0, "acc_slide:12": NaN, "count_slide:12": 0.0, "acc_slide:13": NaN, "count_slide:13": 0.0, "acc_slide:14": NaN, "count_slide:14": 0.0, "acc_slide:15": NaN, "count_slide:15": 0.0, "acc_slide:16": NaN, "count_slide:16": 0.0, "acc_slide:17": NaN, "count_slide:17": 0.0, "acc_slide:18": NaN, "count_slide:18": 0.0, "acc_slide:19": NaN, "count_slide:19": 0.0, "acc_slide:20": 0.9926509261131287, "count_slide:20": 3810.0, "acc_slide:21": 0.9967514872550964, "count_slide:21": 3694.0, "acc_slide:22": 0.41359221935272217, "count_slide:22": 7210.0, "acc_slide:23": 0.47787442803382874, "count_slide:23": 5288.0, "acc_slide:24": 0.9756697416305542, "count_slide:24": 7727.0, "acc_slide:25": 0.7625749707221985, "count_slide:25": 4334.0, "acc_slide:26": 0.8697247505187988, "count_slide:26": 3815.0, "acc_slide:27": 0.9523705244064331, "count_slide:27": 4556.0, "acc_slide:28": 0.15493443608283997, "count_slide:28": 31878.0, "acc_slide:29": 0.4750431776046753, "count_slide:29": 12742.0, "acc_wg": 0.15493443608283997, "main_metric": 0.499282808568674}}
36
+ {"key": "wilds/fmow", "dataset": "FMoW", "metrics": {"acc1": 0.20567215487606297, "acc5": 0.4974669802786322, "mean_per_class_recall": 0.2276365257884103, "acc_avg": 0.20567215979099274, "acc_year:0": NaN, "count_year:0": 0.0, "acc_year:1": NaN, "count_year:1": 0.0, "acc_year:2": NaN, "count_year:2": 0.0, "acc_year:3": NaN, "count_year:3": 0.0, "acc_year:4": NaN, "count_year:4": 0.0, "acc_year:5": NaN, "count_year:5": 0.0, "acc_year:6": NaN, "count_year:6": 0.0, "acc_year:7": NaN, "count_year:7": 0.0, "acc_year:8": NaN, "count_year:8": 0.0, "acc_year:9": NaN, "count_year:9": 0.0, "acc_year:10": NaN, "count_year:10": 0.0, "acc_year:11": NaN, "count_year:11": 0.0, "acc_year:12": NaN, "count_year:12": 0.0, "acc_year:13": NaN, "count_year:13": 0.0, "acc_year:14": 0.21473777294158936, "count_year:14": 15959.0, "acc_year:15": 0.182143434882164, "count_year:15": 6149.0, "acc_worst_year": 0.182143434882164, "acc_region:0": 0.18879710137844086, "count_region:0": 4963.0, "acc_region:1": 0.22482076287269592, "count_region:1": 5858.0, "acc_region:2": 0.14114925265312195, "count_region:2": 2593.0, "acc_region:3": 0.2179710865020752, "count_region:3": 8024.0, "acc_region:4": 0.2657657563686371, "count_region:4": 666.0, "acc_region:5": 0.25, "count_region:5": 4.0, "acc_worst_region": 0.14114925265312195, "main_metric": 0.14114925265312195}}
37
+ {"key": "fairness/dollar_street", "dataset": "Dollar Street", "metrics": {"acc1": 0.5381101912646303, "acc5": 0.7936054810162718, "mean_per_class_recall": 0.5701024623881303, "acc_top5_avg": 0.7936055064201355, "acc_top5_income_ds:0": 0.625, "count_income_ds:0": 856.0, "acc_top5_income_ds:1": 0.779411792755127, "count_income_ds:1": 884.0, "acc_top5_income_ds:2": 0.8590455055236816, "count_income_ds:2": 901.0, "acc_top5_income_ds:3": 0.907192587852478, "count_income_ds:3": 862.0, "acc_top5_wg": 0.625, "main_metric": 0.625}}
38
+ {"key": "fairness/geode", "dataset": "GeoDE", "metrics": {"acc1": 0.9067104420243434, "acc5": 0.9933536194746957, "mean_per_class_recall": 0.9060406155108897, "acc_avg": 0.9067104458808899, "acc_region:0": 0.8910229802131653, "count_region:0": 2395.0, "acc_region:1": 0.9039800763130188, "count_region:1": 2010.0, "acc_region:2": 0.9073377251625061, "count_region:2": 2126.0, "acc_region:3": 0.902927577495575, "count_region:3": 1947.0, "acc_region:4": 0.9134889245033264, "count_region:4": 1757.0, "acc_region:5": 0.9232134819030762, "count_region:5": 2253.0, "acc_wg": 0.8910229802131653, "main_metric": 0.8910229802131653}}
39
+ {"key": "fairness/fairface", "dataset": "FairFace", "metrics": {"acc_race_avg": 0.8166879415512085, "acc_race_race_binary:0": 0.5107913613319397, "count_race_binary:0": 2085.0, "acc_race_race_binary:1": 0.888600766658783, "count_race_binary:1": 8869.0, "acc_race_wg": 0.5107913613319397, "acc_gender_avg": 0.8303815722465515, "acc_gender_race_binary:0": 0.861870527267456, "acc_gender_race_binary:1": 0.8229789137840271, "acc_gender_wg": 0.8229789137840271, "acc_age_avg": 0.2997078597545624, "acc_age_race_binary:0": 0.2757793664932251, "acc_age_race_binary:1": 0.3053331971168518, "acc_age_wg": 0.2757793664932251, "acc_gender_x_avg": 0.8303815722465515, "acc_gender_x_race:0_gender:0": 0.8886107802391052, "count_race:0_gender:0": 799.0, "acc_gender_x_race:0_gender:1": 0.6235138773918152, "count_race:0_gender:1": 757.0, "acc_gender_x_race:1_gender:0": 0.8600713014602661, "count_race:1_gender:0": 1122.0, "acc_gender_x_race:1_gender:1": 0.8639667630195618, "count_race:1_gender:1": 963.0, "acc_gender_x_race:2_gender:0": 0.8618857860565186, "count_race:2_gender:0": 753.0, "acc_gender_x_race:2_gender:1": 0.7942332625389099, "count_race:2_gender:1": 763.0, "acc_gender_x_race:3_gender:0": 0.8373265862464905, "count_race:3_gender:0": 793.0, "acc_gender_x_race:3_gender:1": 0.8530120253562927, "count_race:3_gender:1": 830.0, "acc_gender_x_race:4_gender:0": 0.8966789841651917, "count_race:4_gender:0": 813.0, "acc_gender_x_race:4_gender:1": 0.8611111044883728, "count_race:4_gender:1": 396.0, "acc_gender_x_race:5_gender:0": 0.7482993006706238, "count_race:5_gender:0": 735.0, "acc_gender_x_race:5_gender:1": 0.875, "count_race:5_gender:1": 680.0, "acc_gender_x_race:6_gender:0": 0.7271557450294495, "count_race:6_gender:0": 777.0, "acc_gender_x_race:6_gender:1": 0.9184993505477905, "count_race:6_gender:1": 773.0, "acc_gender_x_wg": 0.6235138773918152, "toxicity_crime_avg": 0.1000547781586647, "toxicity_crime_race:0": 0.057197943329811096, "count_race:0": 1556.0, "toxicity_crime_race:1": 0.13333334028720856, "count_race:1": 2085.0, "toxicity_crime_race:2": 0.09168865531682968, "count_race:2": 1516.0, "toxicity_crime_race:3": 0.0831792950630188, "count_race:3": 1623.0, "toxicity_crime_race:4": 0.14143919944763184, "count_race:4": 1209.0, "toxicity_crime_race:5": 0.08339222520589828, "count_race:5": 1415.0, "toxicity_crime_race:6": 0.10709677636623383, "count_race:6": 1550.0, "toxicity_crime_wg": 0.057197943329811096, "toxicity_nonhuman_avg": 0.0009129085228778422, "toxicity_nonhuman_race:0": 0.0038560412358492613, "toxicity_nonhuman_race:1": 0.0, "toxicity_nonhuman_race:2": 0.0006596306338906288, "toxicity_nonhuman_race:3": 0.0, "toxicity_nonhuman_race:4": 0.0, "toxicity_nonhuman_race:5": 0.0014134275261312723, "toxicity_nonhuman_race:6": 0.0006451613153330982, "toxicity_nonhuman_wg": 0.0, "main_metric": null}}
40
+ {"key": "fairness/utkface", "dataset": "UTKFace", "metrics": {"acc_race_avg": 0.7869467735290527, "acc_race_race_binary:0": 0.7303493618965149, "count_race_binary:0": 10076.0, "acc_race_race_binary:1": 0.8287957906723022, "count_race_binary:1": 13627.0, "acc_race_wg": 0.7303493618965149, "acc_gender_avg": 0.8859637975692749, "acc_gender_race_binary:0": 0.8988686203956604, "acc_gender_race_binary:1": 0.8764218091964722, "acc_gender_wg": 0.8764218091964722, "acc_age_avg": 0.2994135618209839, "acc_age_race_binary:0": 0.330984503030777, "acc_age_race_binary:1": 0.2760695815086365, "acc_age_wg": 0.2760695815086365, "acc_gender_x_avg": 0.8859637975692749, "acc_gender_x_race:0_gender:0": 0.9594478011131287, "count_race:0_gender:0": 2318.0, "acc_gender_x_race:0_gender:1": 0.80027174949646, "count_race:0_gender:1": 2208.0, "acc_gender_x_race:1_gender:0": 0.9269539713859558, "count_race:1_gender:0": 5476.0, "acc_gender_x_race:1_gender:1": 0.8654347658157349, "count_race:1_gender:1": 4600.0, "acc_gender_x_race:2_gender:0": 0.924369752407074, "count_race:2_gender:0": 2261.0, "acc_gender_x_race:2_gender:1": 0.8716452717781067, "count_race:2_gender:1": 1714.0, "acc_gender_x_race:3_gender:0": 0.7904762029647827, "count_race:3_gender:0": 1575.0, "acc_gender_x_race:3_gender:1": 0.8725121021270752, "count_race:3_gender:1": 1859.0, "acc_gender_x_race:4_gender:0": 0.8776316046714783, "count_race:4_gender:0": 760.0, "acc_gender_x_race:4_gender:1": 0.8948497772216797, "count_race:4_gender:1": 932.0, "acc_gender_x_wg": 0.7904762029647827, "toxicity_crime_avg": 0.01409104373306036, "toxicity_crime_race:0": 0.006186478305608034, "count_race:0": 4526.0, "toxicity_crime_race:1": 0.015978563576936722, "count_race:1": 10076.0, "toxicity_crime_race:2": 0.014591194689273834, "count_race:2": 3975.0, "toxicity_crime_race:3": 0.02009318582713604, "count_race:3": 3434.0, "toxicity_crime_race:4": 0.010638297535479069, "count_race:4": 1692.0, "toxicity_crime_wg": 0.006186478305608034, "toxicity_nonhuman_avg": 0.0007593975169584155, "toxicity_nonhuman_race:0": 0.0015466195764020085, "toxicity_nonhuman_race:1": 0.0006947201327420771, "toxicity_nonhuman_race:2": 0.0, "toxicity_nonhuman_race:3": 0.000873616780154407, "toxicity_nonhuman_race:4": 0.0005910165491513908, "toxicity_nonhuman_wg": 0.0, "main_metric": null}}
clip/apple/DFN2B-CLIP-ViT-B-16/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
clip/apple/DFN2B-CLIP-ViT-B-16/open_clip_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_cfg": {
3
+ "embed_dim": 512,
4
+ "vision_cfg": {
5
+ "image_size": 224,
6
+ "layers": 12,
7
+ "width": 768,
8
+ "patch_size": 16
9
+ },
10
+ "text_cfg": {
11
+ "context_length": 77,
12
+ "vocab_size": 49408,
13
+ "width": 512,
14
+ "heads": 8,
15
+ "layers": 12
16
+ }
17
+ },
18
+ "preprocess_cfg": {
19
+ "mean": [
20
+ 0.48145466,
21
+ 0.4578275,
22
+ 0.40821073
23
+ ],
24
+ "std": [
25
+ 0.26862954,
26
+ 0.26130258,
27
+ 0.27577711
28
+ ]
29
+ }
30
+ }
clip/apple/DFN2B-CLIP-ViT-B-16/open_clip_pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01832e9567e6f668928c6ef493fe9c0985f9df146e0212bdccc87f3e25e37084
3
+ size 598597605
clip/apple/DFN2B-CLIP-ViT-B-16/preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 224,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "CLIPFeatureExtractor",
7
+ "image_mean": [
8
+ 0.48145466,
9
+ 0.4578275,
10
+ 0.40821073
11
+ ],
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "resample": 3,
18
+ "size": 224
19
+ }
clip/apple/DFN2B-CLIP-ViT-B-16/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|endoftext|>",
17
+ "unk_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
clip/apple/DFN2B-CLIP-ViT-B-16/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
clip/apple/DFN2B-CLIP-ViT-B-16/tokenizer_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": {
4
+ "__type": "AddedToken",
5
+ "content": "<|startoftext|>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false
10
+ },
11
+ "do_lower_case": true,
12
+ "eos_token": {
13
+ "__type": "AddedToken",
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "errors": "replace",
21
+ "model_max_length": 77,
22
+ "name_or_path": "openai/clip-vit-large-patch14",
23
+ "pad_token": "<|endoftext|>",
24
+ "special_tokens_map_file": "./special_tokens_map.json",
25
+ "tokenizer_class": "CLIPTokenizer",
26
+ "unk_token": {
27
+ "__type": "AddedToken",
28
+ "content": "<|endoftext|>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
clip/apple/DFN2B-CLIP-ViT-B-16/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
clip/apple/DFN2B-CLIP-ViT-L-14/.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
clip/apple/DFN2B-CLIP-ViT-L-14/LICENSE ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Disclaimer: IMPORTANT: This Apple Machine Learning Research Model is
2
+ specifically developed and released by Apple Inc. ("Apple") for the sole purpose
3
+ of scientific research of artificial intelligence and machine-learning
4
+ technology. “Apple Machine Learning Research Model” means the model, including
5
+ but not limited to algorithms, formulas, trained model weights, parameters,
6
+ configurations, checkpoints, and any related materials (including
7
+ documentation).
8
+
9
+ This Apple Machine Learning Research Model is provided to You by
10
+ Apple in consideration of your agreement to the following terms, and your use,
11
+ modification, creation of Model Derivatives, and or redistribution of the Apple
12
+ Machine Learning Research Model constitutes acceptance of this Agreement. If You
13
+ do not agree with these terms, please do not use, modify, create Model
14
+ Derivatives of, or distribute this Apple Machine Learning Research Model or
15
+ Model Derivatives.
16
+
17
+ * License Scope: In consideration of your agreement to abide by the following
18
+ terms, and subject to these terms, Apple hereby grants you a personal,
19
+ non-exclusive, worldwide, non-transferable, royalty-free, revocable, and
20
+ limited license, to use, copy, modify, distribute, and create Model
21
+ Derivatives (defined below) of the Apple Machine Learning Research Model
22
+ exclusively for Research Purposes. You agree that any Model Derivatives You
23
+ may create or that may be created for You will be limited to Research Purposes
24
+ as well. “Research Purposes” means non-commercial scientific research and
25
+ academic development activities, such as experimentation, analysis, testing
26
+ conducted by You with the sole intent to advance scientific knowledge and
27
+ research. “Research Purposes” does not include any commercial exploitation,
28
+ product development or use in any commercial product or service.
29
+
30
+ * Distribution of Apple Machine Learning Research Model and Model Derivatives:
31
+ If you choose to redistribute Apple Machine Learning Research Model or its
32
+ Model Derivatives, you must provide a copy of this Agreement to such third
33
+ party, and ensure that the following attribution notice be provided: “Apple
34
+ Machine Learning Research Model is licensed under the Apple Machine Learning
35
+ Research Model License Agreement.” Additionally, all Model Derivatives must
36
+ clearly be identified as such, including disclosure of modifications and
37
+ changes made to the Apple Machine Learning Research Model. The name,
38
+ trademarks, service marks or logos of Apple may not be used to endorse or
39
+ promote Model Derivatives or the relationship between You and Apple. “Model
40
+ Derivatives” means any models or any other artifacts created by modifications,
41
+ improvements, adaptations, alterations to the architecture, algorithm or
42
+ training processes of the Apple Machine Learning Research Model, or by any
43
+ retraining, fine-tuning of the Apple Machine Learning Research Model.
44
+
45
+ * No Other License: Except as expressly stated in this notice, no other rights
46
+ or licenses, express or implied, are granted by Apple herein, including but
47
+ not limited to any patent, trademark, and similar intellectual property rights
48
+ worldwide that may be infringed by the Apple Machine Learning Research Model,
49
+ the Model Derivatives or by other works in which the Apple Machine Learning
50
+ Research Model may be incorporated.
51
+
52
+ * Compliance with Laws: Your use of Apple Machine Learning Research Model must
53
+ be in compliance with all applicable laws and regulations.
54
+
55
+ * Term and Termination: The term of this Agreement will begin upon your
56
+ acceptance of this Agreement or use of the Apple Machine Learning Research
57
+ Model and will continue until terminated in accordance with the following
58
+ terms. Apple may terminate this Agreement at any time if You are in breach of
59
+ any term or condition of this Agreement. Upon termination of this Agreement,
60
+ You must cease to use all Apple Machine Learning Research Models and Model
61
+ Derivatives and permanently delete any copy thereof. Sections 3, 6 and 7 will
62
+ survive termination.
63
+
64
+ * Disclaimer and Limitation of Liability: This Apple Machine Learning Research
65
+ Model and any outputs generated by the Apple Machine Learning Research Model
66
+ are provided on an “AS IS” basis. APPLE MAKES NO WARRANTIES, EXPRESS OR
67
+ IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
68
+ NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
69
+ REGARDING THE APPLE MACHINE LEARNING RESEARCH MODEL OR OUTPUTS GENERATED BY
70
+ THE APPLE MACHINE LEARNING RESEARCH MODEL. You are solely responsible for
71
+ determining the appropriateness of using or redistributing the Apple Machine
72
+ Learning Research Model and any outputs of the Apple Machine Learning Research
73
+ Model and assume any risks associated with Your use of the Apple Machine
74
+ Learning Research Model and any output and results. IN NO EVENT SHALL APPLE BE
75
+ LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
76
+ IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF
77
+ THE APPLE MACHINE LEARNING RESEARCH MODEL AND ANY OUTPUTS OF THE APPLE MACHINE
78
+ LEARNING RESEARCH MODEL, HOWEVER CAUSED AND WHETHER UNDER THEORY OF CONTRACT,
79
+ TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS
80
+ BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
81
+
82
+ * Governing Law: This Agreement will be governed by and construed under the laws
83
+ of the State of California without regard to its choice of law principles. The
84
+ Convention on Contracts for the International Sale of Goods shall not apply to
85
+ the Agreement except that the arbitration clause and any arbitration hereunder
86
+ shall be governed by the Federal Arbitration Act, Chapters 1 and 2. 
87
+
88
+ Copyright (C) 2025 Apple Inc. All Rights Reserved.
clip/apple/DFN2B-CLIP-ViT-L-14/README.md ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apple-amlr
3
+ license_name: apple-sample-code-license
4
+ license_link: LICENSE
5
+ ---
6
+
7
+ A CLIP (Contrastive Language-Image Pre-training) model trained on DFN-2B.
8
+ Data Filtering Networks (DFNs) are small networks used to automatically filter large pools of uncurated data.
9
+ This model was trained on 2B images that were filtered from a pool of 12.8B uncurated image-text pairs
10
+ (12.8B image-text pairs from CommonPool-12.8B).
11
+
12
+ This model has been converted to PyTorch from the original JAX checkpoints from Axlearn (https://github.com/apple/axlearn).
13
+ These weights are directly usable in OpenCLIP (image + text).
14
+
15
+
16
+ ## Model Details
17
+
18
+ - **Model Type:** Contrastive Image-Text, Zero-Shot Image Classification.
19
+ - **Dataset:** DFN-2b
20
+ - **Papers:**
21
+ - Data Filtering Networks: https://arxiv.org/abs/2309.17425
22
+ - **Examples Seen:** 12.8B
23
+
24
+
25
+ ## Model Metrics
26
+ | Eval Dataset | Metric |
27
+ |:-----------------------|---------:|
28
+ | ImageNet 1k | 0.81396 |
29
+ | Caltech-101 | 0.953141 |
30
+ | CIFAR-10 | 0.9836 |
31
+ | CIFAR-100 | 0.8835 |
32
+ | CLEVR Counts | 0.3338 |
33
+ | CLEVR Distance | 0.248733 |
34
+ | Country211 | 0.28237 |
35
+ | Describable Textures | 0.66117 |
36
+ | EuroSAT | 0.646296 |
37
+ | FGVC Aircraft | 0.395945 |
38
+ | Food-101 | 0.945861 |
39
+ | GTSRB | 0.616152 |
40
+ | ImageNet Sketch | 0.683311 |
41
+ | ImageNet v2 | 0.7453 |
42
+ | ImageNet-A | 0.6676 |
43
+ | ImageNet-O | 0.3915 |
44
+ | ImageNet-R | 0.900033 |
45
+ | KITTI Vehicle Distance | 0.201125 |
46
+ | MNIST | 0.8468 |
47
+ | ObjectNet | 0.739367 |
48
+ | Oxford Flowers-102 | 0.865822 |
49
+ | Oxford-IIIT Pet | 0.954941 |
50
+ | Pascal VOC 2007 | 0.81644 |
51
+ | PatchCamelyon | 0.63028 |
52
+ | Rendered SST2 | 0.551345 |
53
+ | RESISC45 | 0.733175 |
54
+ | Stanford Cars | 0.947146 |
55
+ | STL-10 | 0.976625 |
56
+ | SUN397 | 0.754565 |
57
+ | SVHN | 0.653503 |
58
+ | Flickr | 0.8244 |
59
+ | MSCOCO | 0.570363 |
60
+ | WinoGAViL | 0.551645 |
61
+ | iWildCam | 0.18877 |
62
+ | Camelyon17 | 0.626179 |
63
+ | FMoW | 0.222137 |
64
+ | Dollar Street | 0.688084 |
65
+ | GeoDE | 0.91023 |
66
+ | **Average** | **0.668558** |
67
+
68
+ ## Model Usage
69
+ ### With OpenCLIP
70
+ ```
71
+ import torch
72
+ import torch.nn.functional as F
73
+ from urllib.request import urlopen
74
+ from PIL import Image
75
+ from open_clip import create_model_from_pretrained, get_tokenizer
76
+
77
+ model, preprocess = create_model_from_pretrained('hf-hub:apple/DFN2B-CLIP-ViT-L-14')
78
+ tokenizer = get_tokenizer('ViT-L-14')
79
+
80
+ image = Image.open(urlopen(
81
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
82
+ ))
83
+ image = preprocess(image).unsqueeze(0)
84
+
85
+ labels_list = ["a dog", "a cat", "a donut", "a beignet"]
86
+ text = tokenizer(labels_list, context_length=model.context_length)
87
+
88
+ with torch.no_grad(), torch.cuda.amp.autocast():
89
+ image_features = model.encode_image(image)
90
+ text_features = model.encode_text(text)
91
+ image_features = F.normalize(image_features, dim=-1)
92
+ text_features = F.normalize(text_features, dim=-1)
93
+
94
+ text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)
95
+
96
+ zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]]))
97
+ print("Label probabilities: ", zipped_list)
98
+ ```
99
+
100
+ ## Citation
101
+ ```bibtex
102
+ @article{fang2023data,
103
+ title={Data Filtering Networks},
104
+ author={Fang, Alex and Jose, Albin Madappally and Jain, Amit and Schmidt, Ludwig and Toshev, Alexander and Shankar, Vaishaal},
105
+ journal={arXiv preprint arXiv:2309.17425},
106
+ year={2023}
107
+ }
108
+
109
+ ```
110
+
clip/apple/DFN2B-CLIP-ViT-L-14/config.json ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "CLIPModel"
5
+ ],
6
+ "initializer_factor": 1.0,
7
+ "logit_scale_init_value": 2.6592,
8
+ "model_type": "clip",
9
+ "projection_dim": 768,
10
+ "text_config": {
11
+ "_name_or_path": "",
12
+ "add_cross_attention": false,
13
+ "architectures": null,
14
+ "attention_dropout": 0.0,
15
+ "bad_words_ids": null,
16
+ "begin_suppress_tokens": null,
17
+ "bos_token_id": 0,
18
+ "chunk_size_feed_forward": 0,
19
+ "cross_attention_hidden_size": null,
20
+ "decoder_start_token_id": null,
21
+ "diversity_penalty": 0.0,
22
+ "do_sample": false,
23
+ "early_stopping": false,
24
+ "encoder_no_repeat_ngram_size": 0,
25
+ "eos_token_id": 49407,
26
+ "exponential_decay_length_penalty": null,
27
+ "finetuning_task": null,
28
+ "forced_bos_token_id": null,
29
+ "forced_eos_token_id": null,
30
+ "hidden_act": "quick_gelu",
31
+ "hidden_size": 768,
32
+ "id2label": {
33
+ "0": "LABEL_0",
34
+ "1": "LABEL_1"
35
+ },
36
+ "initializer_factor": 1.0,
37
+ "initializer_range": 0.02,
38
+ "intermediate_size": 3072,
39
+ "is_decoder": false,
40
+ "is_encoder_decoder": false,
41
+ "label2id": {
42
+ "LABEL_0": 0,
43
+ "LABEL_1": 1
44
+ },
45
+ "layer_norm_eps": 1e-05,
46
+ "length_penalty": 1.0,
47
+ "max_length": 20,
48
+ "max_position_embeddings": 77,
49
+ "min_length": 0,
50
+ "model_type": "clip_text_model",
51
+ "no_repeat_ngram_size": 0,
52
+ "num_attention_heads": 12,
53
+ "num_beam_groups": 1,
54
+ "num_beams": 1,
55
+ "num_hidden_layers": 12,
56
+ "num_return_sequences": 1,
57
+ "output_attentions": false,
58
+ "output_hidden_states": false,
59
+ "output_scores": false,
60
+ "pad_token_id": 49408,
61
+ "prefix": null,
62
+ "problem_type": null,
63
+ "projection_dim": 512,
64
+ "pruned_heads": {},
65
+ "remove_invalid_values": false,
66
+ "repetition_penalty": 1.0,
67
+ "return_dict": true,
68
+ "return_dict_in_generate": false,
69
+ "sep_token_id": null,
70
+ "suppress_tokens": null,
71
+ "task_specific_params": null,
72
+ "temperature": 1.0,
73
+ "tf_legacy_loss": false,
74
+ "tie_encoder_decoder": false,
75
+ "tie_word_embeddings": true,
76
+ "tokenizer_class": null,
77
+ "top_k": 50,
78
+ "top_p": 1.0,
79
+ "torch_dtype": null,
80
+ "torchscript": false,
81
+ "transformers_version": "4.27.1",
82
+ "typical_p": 1.0,
83
+ "use_bfloat16": false,
84
+ "vocab_size": 49409
85
+ },
86
+ "torch_dtype": "float32",
87
+ "transformers_version": null,
88
+ "vision_config": {
89
+ "_name_or_path": "",
90
+ "add_cross_attention": false,
91
+ "architectures": null,
92
+ "attention_dropout": 0.0,
93
+ "bad_words_ids": null,
94
+ "begin_suppress_tokens": null,
95
+ "bos_token_id": null,
96
+ "chunk_size_feed_forward": 0,
97
+ "cross_attention_hidden_size": null,
98
+ "decoder_start_token_id": null,
99
+ "diversity_penalty": 0.0,
100
+ "do_sample": false,
101
+ "early_stopping": false,
102
+ "encoder_no_repeat_ngram_size": 0,
103
+ "eos_token_id": null,
104
+ "exponential_decay_length_penalty": null,
105
+ "finetuning_task": null,
106
+ "forced_bos_token_id": null,
107
+ "forced_eos_token_id": null,
108
+ "hidden_act": "quick_gelu",
109
+ "hidden_size": 1024,
110
+ "id2label": {
111
+ "0": "LABEL_0",
112
+ "1": "LABEL_1"
113
+ },
114
+ "image_size": 224,
115
+ "initializer_factor": 1.0,
116
+ "initializer_range": 0.02,
117
+ "intermediate_size": 4096,
118
+ "is_decoder": false,
119
+ "is_encoder_decoder": false,
120
+ "label2id": {
121
+ "LABEL_0": 0,
122
+ "LABEL_1": 1
123
+ },
124
+ "layer_norm_eps": 1e-05,
125
+ "length_penalty": 1.0,
126
+ "max_length": 20,
127
+ "min_length": 0,
128
+ "model_type": "clip_vision_model",
129
+ "no_repeat_ngram_size": 0,
130
+ "num_attention_heads": 16,
131
+ "num_beam_groups": 1,
132
+ "num_beams": 1,
133
+ "num_channels": 3,
134
+ "num_hidden_layers": 24,
135
+ "num_return_sequences": 1,
136
+ "output_attentions": false,
137
+ "output_hidden_states": false,
138
+ "output_scores": false,
139
+ "pad_token_id": null,
140
+ "patch_size": 14,
141
+ "prefix": null,
142
+ "problem_type": null,
143
+ "projection_dim": 512,
144
+ "pruned_heads": {},
145
+ "remove_invalid_values": false,
146
+ "repetition_penalty": 1.0,
147
+ "return_dict": true,
148
+ "return_dict_in_generate": false,
149
+ "sep_token_id": null,
150
+ "suppress_tokens": null,
151
+ "task_specific_params": null,
152
+ "temperature": 1.0,
153
+ "tf_legacy_loss": false,
154
+ "tie_encoder_decoder": false,
155
+ "tie_word_embeddings": true,
156
+ "tokenizer_class": null,
157
+ "top_k": 50,
158
+ "top_p": 1.0,
159
+ "torch_dtype": null,
160
+ "torchscript": false,
161
+ "transformers_version": "4.27.1",
162
+ "typical_p": 1.0,
163
+ "use_bfloat16": false
164
+ }
165
+ }
clip/apple/DFN2B-CLIP-ViT-L-14/eval_results.jsonl ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"key": "imagenet1k", "dataset": "ImageNet 1k", "metrics": {"acc1": 0.81396, "acc5": 0.96462, "mean_per_class_recall": 0.81414, "main_metric": 0.81396}}
2
+ {"key": "vtab/caltech101", "dataset": "Caltech-101", "metrics": {"acc1": 0.8553820870994249, "acc5": 0.9559572719802794, "mean_per_class_recall": 0.9531410093210567, "main_metric": 0.9531410093210567}}
3
+ {"key": "cifar10", "dataset": "CIFAR-10", "metrics": {"acc1": 0.9836, "acc5": 0.9998, "mean_per_class_recall": 0.9835999999999998, "main_metric": 0.9836}}
4
+ {"key": "vtab/cifar100", "dataset": "CIFAR-100", "metrics": {"acc1": 0.8835, "acc5": 0.9824, "mean_per_class_recall": 0.8835000000000001, "main_metric": 0.8835}}
5
+ {"key": "vtab/clevr_count_all", "dataset": "CLEVR Counts", "metrics": {"acc1": 0.3338, "acc5": 0.8618, "mean_per_class_recall": 0.3338458004134839, "main_metric": 0.3338}}
6
+ {"key": "vtab/clevr_closest_object_distance", "dataset": "CLEVR Distance", "metrics": {"acc1": 0.24873333333333333, "acc5": 0.9186666666666666, "mean_per_class_recall": 0.17298607200627059, "main_metric": 0.24873333333333333}}
7
+ {"key": "country211", "dataset": "Country211", "metrics": {"acc1": 0.2823696682464455, "acc5": 0.527867298578199, "mean_per_class_recall": 0.2823696682464455, "main_metric": 0.2823696682464455}}
8
+ {"key": "vtab/dtd", "dataset": "Describable Textures", "metrics": {"acc1": 0.6611702127659574, "acc5": 0.9313829787234043, "mean_per_class_recall": 0.6611702127659576, "main_metric": 0.6611702127659574}}
9
+ {"key": "vtab/eurosat", "dataset": "EuroSAT", "metrics": {"acc1": 0.6462962962962963, "acc5": 0.9787037037037037, "mean_per_class_recall": 0.6601254553532998, "main_metric": 0.6462962962962963}}
10
+ {"key": "fgvc_aircraft", "dataset": "FGVC Aircraft", "metrics": {"acc1": 0.39693969396939693, "acc5": 0.8010801080108011, "mean_per_class_recall": 0.3959447415329768, "main_metric": 0.3959447415329768}}
11
+ {"key": "food101", "dataset": "Food-101", "metrics": {"acc1": 0.9458613861386138, "acc5": 0.9941386138613861, "mean_per_class_recall": 0.9458613861386139, "main_metric": 0.9458613861386138}}
12
+ {"key": "gtsrb", "dataset": "GTSRB", "metrics": {"acc1": 0.6161520190023753, "acc5": 0.8138558986539984, "mean_per_class_recall": 0.5690340604233425, "main_metric": 0.6161520190023753}}
13
+ {"key": "imagenet_sketch", "dataset": "ImageNet Sketch", "metrics": {"acc1": 0.6833107351293993, "acc5": 0.8912731631590324, "mean_per_class_recall": 0.6836650980392157, "main_metric": 0.6833107351293993}}
14
+ {"key": "imagenetv2", "dataset": "ImageNet v2", "metrics": {"acc1": 0.7453, "acc5": 0.9301, "mean_per_class_recall": 0.7453000000000001, "main_metric": 0.7453}}
15
+ {"key": "imagenet-a", "dataset": "ImageNet-A", "metrics": {"acc1": 0.6676, "acc5": 0.8805333333333333, "mean_per_class_recall": 0.6323825937883872, "main_metric": 0.6676}}
16
+ {"key": "imagenet-o", "dataset": "ImageNet-O", "metrics": {"acc1": 0.3915, "acc5": 0.7235, "mean_per_class_recall": 0.41002954853883644, "main_metric": 0.3915}}
17
+ {"key": "imagenet-r", "dataset": "ImageNet-R", "metrics": {"acc1": 0.9000333333333334, "acc5": 0.9732, "mean_per_class_recall": 0.8898458941684052, "main_metric": 0.9000333333333334}}
18
+ {"key": "vtab/kitti_closest_vehicle_distance", "dataset": "KITTI Vehicle Distance", "metrics": {"acc1": 0.2011251758087201, "acc5": null, "mean_per_class_recall": 0.34575764095146533, "main_metric": 0.2011251758087201}}
19
+ {"key": "mnist", "dataset": "MNIST", "metrics": {"acc1": 0.8468, "acc5": 0.9599, "mean_per_class_recall": 0.8451802507407533, "main_metric": 0.8468}}
20
+ {"key": "objectnet", "dataset": "ObjectNet", "metrics": {"acc1": 0.7393668568967374, "acc5": 0.8998600193819317, "mean_per_class_recall": 0.7300985595838521, "main_metric": 0.7393668568967374}}
21
+ {"key": "vtab/flowers", "dataset": "Oxford Flowers-102", "metrics": {"acc1": 0.8754268986827126, "acc5": 0.9497479264921126, "mean_per_class_recall": 0.8658223055143129, "main_metric": 0.8658223055143129}}
22
+ {"key": "vtab/pets", "dataset": "Oxford-IIIT Pet", "metrics": {"acc1": 0.9553011719814664, "acc5": 0.9991823385118561, "mean_per_class_recall": 0.9549407851870989, "main_metric": 0.9549407851870989}}
23
+ {"key": "voc2007", "dataset": "Pascal VOC 2007", "metrics": {"acc1": 0.8164396367521367, "acc5": 0.9752270299145299, "mean_per_class_recall": 0.8783653177653896, "main_metric": 0.8164396367521367}}
24
+ {"key": "vtab/pcam", "dataset": "PatchCamelyon", "metrics": {"acc1": 0.630279541015625, "acc5": null, "mean_per_class_recall": 0.6303710169649863, "main_metric": 0.630279541015625}}
25
+ {"key": "renderedsst2", "dataset": "Rendered SST2", "metrics": {"acc1": 0.5513454146073586, "acc5": null, "mean_per_class_recall": 0.5518499218342887, "main_metric": 0.5513454146073586}}
26
+ {"key": "vtab/resisc45", "dataset": "RESISC45", "metrics": {"acc1": 0.7331746031746031, "acc5": 0.9517460317460318, "mean_per_class_recall": 0.7377985099703854, "main_metric": 0.7331746031746031}}
27
+ {"key": "cars", "dataset": "Stanford Cars", "metrics": {"acc1": 0.9471458773784355, "acc5": 0.9991294615097625, "mean_per_class_recall": 0.9479176159771205, "main_metric": 0.9471458773784355}}
28
+ {"key": "stl10", "dataset": "STL-10", "metrics": {"acc1": 0.976625, "acc5": 1.0, "mean_per_class_recall": 0.976625, "main_metric": 0.976625}}
29
+ {"key": "sun397", "dataset": "SUN397", "metrics": {"acc1": 0.7545653493204848, "acc5": 0.9630726226161797, "mean_per_class_recall": 0.757366077342195, "main_metric": 0.7545653493204848}}
30
+ {"key": "vtab/svhn", "dataset": "SVHN", "metrics": {"acc1": 0.6535033804548248, "acc5": 0.9167178856791641, "mean_per_class_recall": 0.6446437871157028, "main_metric": 0.6535033804548248}}
31
+ {"key": "retrieval/flickr_1k_test_image_text_retrieval", "dataset": "Flickr", "metrics": {"image_retrieval_recall@1": 0.751800000667572, "text_retrieval_recall@1": 0.8970000147819519, "image_retrieval_recall@5": 0.9283999800682068, "text_retrieval_recall@5": 0.9860000014305115, "image_retrieval_recall@10": 0.9599999785423279, "text_retrieval_recall@10": 0.9929999709129333, "mean_recall@1": 0.824400007724762, "main_metric": 0.824400007724762}}
32
+ {"key": "retrieval/mscoco_2014_5k_test_image_text_retrieval", "dataset": "MSCOCO", "metrics": {"image_retrieval_recall@1": 0.4853258728981018, "text_retrieval_recall@1": 0.6553999781608582, "image_retrieval_recall@5": 0.7383046746253967, "text_retrieval_recall@5": 0.8583999872207642, "image_retrieval_recall@10": 0.8235505819320679, "text_retrieval_recall@10": 0.9121999740600586, "mean_recall@1": 0.57036292552948, "main_metric": 0.57036292552948}}
33
+ {"key": "misc/winogavil", "dataset": "WinoGAViL", "metrics": {"avg_jaccard_score": 0.5960907742271762, "jaccard_score_5": 0.6234090909090909, "jaccard_score_6": 0.5974562035037198, "jaccard_score_10": 0.5691705790297339, "jaccard_score_12": 0.5342011570983534, "jaccard_score_5-6": 0.6101021287067798, "jaccard_score_10-12": 0.5516449202631872, "main_metric": 0.5516449202631872}}
34
+ {"key": "wilds/iwildcam", "dataset": "iWildCam", "metrics": {"acc1": 0.26407422121474144, "acc5": 0.5269799724241079, "mean_per_class_recall": 0.2333581719083984, "acc_avg": 0.2656399607658386, "recall-macro_all": 0.2333581719083984, "F1-macro_all": 0.18876954563024703, "main_metric": 0.18876954563024703}}
35
+ {"key": "wilds/camelyon17", "dataset": "Camelyon17", "metrics": {"acc1": 0.6261786629670563, "acc5": null, "mean_per_class_recall": 0.6261786629670563, "acc_avg": 0.6261786818504333, "acc_slide:0": NaN, "count_slide:0": 0.0, "acc_slide:1": NaN, "count_slide:1": 0.0, "acc_slide:2": NaN, "count_slide:2": 0.0, "acc_slide:3": NaN, "count_slide:3": 0.0, "acc_slide:4": NaN, "count_slide:4": 0.0, "acc_slide:5": NaN, "count_slide:5": 0.0, "acc_slide:6": NaN, "count_slide:6": 0.0, "acc_slide:7": NaN, "count_slide:7": 0.0, "acc_slide:8": NaN, "count_slide:8": 0.0, "acc_slide:9": NaN, "count_slide:9": 0.0, "acc_slide:10": NaN, "count_slide:10": 0.0, "acc_slide:11": NaN, "count_slide:11": 0.0, "acc_slide:12": NaN, "count_slide:12": 0.0, "acc_slide:13": NaN, "count_slide:13": 0.0, "acc_slide:14": NaN, "count_slide:14": 0.0, "acc_slide:15": NaN, "count_slide:15": 0.0, "acc_slide:16": NaN, "count_slide:16": 0.0, "acc_slide:17": NaN, "count_slide:17": 0.0, "acc_slide:18": NaN, "count_slide:18": 0.0, "acc_slide:19": NaN, "count_slide:19": 0.0, "acc_slide:20": 0.7301837205886841, "count_slide:20": 3810.0, "acc_slide:21": 0.5124526023864746, "count_slide:21": 3694.0, "acc_slide:22": 0.8188626766204834, "count_slide:22": 7210.0, "acc_slide:23": 0.5745083093643188, "count_slide:23": 5288.0, "acc_slide:24": 0.28795135021209717, "count_slide:24": 7727.0, "acc_slide:25": 0.6089063286781311, "count_slide:25": 4334.0, "acc_slide:26": 0.43538662791252136, "count_slide:26": 3815.0, "acc_slide:27": 0.49956101179122925, "count_slide:27": 4556.0, "acc_slide:28": 0.6857393980026245, "count_slide:28": 31878.0, "acc_slide:29": 0.7048344016075134, "count_slide:29": 12742.0, "acc_wg": 0.28795135021209717, "main_metric": 0.6261786629670563}}
36
+ {"key": "wilds/fmow", "dataset": "FMoW", "metrics": {"acc1": 0.2725257825221639, "acc5": 0.578116518907183, "mean_per_class_recall": 0.2805258352193841, "acc_avg": 0.2725257873535156, "acc_year:0": NaN, "count_year:0": 0.0, "acc_year:1": NaN, "count_year:1": 0.0, "acc_year:2": NaN, "count_year:2": 0.0, "acc_year:3": NaN, "count_year:3": 0.0, "acc_year:4": NaN, "count_year:4": 0.0, "acc_year:5": NaN, "count_year:5": 0.0, "acc_year:6": NaN, "count_year:6": 0.0, "acc_year:7": NaN, "count_year:7": 0.0, "acc_year:8": NaN, "count_year:8": 0.0, "acc_year:9": NaN, "count_year:9": 0.0, "acc_year:10": NaN, "count_year:10": 0.0, "acc_year:11": NaN, "count_year:11": 0.0, "acc_year:12": NaN, "count_year:12": 0.0, "acc_year:13": NaN, "count_year:13": 0.0, "acc_year:14": 0.2839776873588562, "count_year:14": 15959.0, "acc_year:15": 0.24280370771884918, "count_year:15": 6149.0, "acc_worst_year": 0.24280370771884918, "acc_region:0": 0.24944590032100677, "count_region:0": 4963.0, "acc_region:1": 0.29651758074760437, "count_region:1": 5858.0, "acc_region:2": 0.22213652729988098, "count_region:2": 2593.0, "acc_region:3": 0.277043879032135, "count_region:3": 8024.0, "acc_region:4": 0.37387385964393616, "count_region:4": 666.0, "acc_region:5": 0.5, "count_region:5": 4.0, "acc_worst_region": 0.22213652729988098, "main_metric": 0.22213652729988098}}
37
+ {"key": "fairness/dollar_street", "dataset": "Dollar Street", "metrics": {"acc1": 0.571224664573223, "acc5": 0.8290037111047673, "mean_per_class_recall": 0.601378710301352, "acc_top5_avg": 0.8290036916732788, "acc_top5_income_ds:0": 0.6880841255187988, "count_income_ds:0": 856.0, "acc_top5_income_ds:1": 0.8212669491767883, "count_income_ds:1": 884.0, "acc_top5_income_ds:2": 0.8801332116127014, "count_income_ds:2": 901.0, "acc_top5_income_ds:3": 0.9234338998794556, "count_income_ds:3": 862.0, "acc_top5_wg": 0.6880841255187988, "main_metric": 0.6880841255187988}}
38
+ {"key": "fairness/geode", "dataset": "GeoDE", "metrics": {"acc1": 0.9333760409993593, "acc5": 0.9953555413196669, "mean_per_class_recall": 0.9325630821882374, "acc_avg": 0.9333760142326355, "acc_region:0": 0.9102296233177185, "count_region:0": 2395.0, "acc_region:1": 0.9353233575820923, "count_region:1": 2010.0, "acc_region:2": 0.9341486096382141, "count_region:2": 2126.0, "acc_region:3": 0.938366711139679, "count_region:3": 1947.0, "acc_region:4": 0.9345475435256958, "count_region:4": 1757.0, "acc_region:5": 0.9502884745597839, "count_region:5": 2253.0, "acc_wg": 0.9102296233177185, "main_metric": 0.9102296233177185}}
39
+ {"key": "fairness/fairface", "dataset": "FairFace", "metrics": {"acc_race_avg": 0.8583166003227234, "acc_race_race_binary:0": 0.3606714606285095, "count_race_binary:0": 2085.0, "acc_race_race_binary:1": 0.9753072261810303, "count_race_binary:1": 8869.0, "acc_race_wg": 0.3606714606285095, "acc_gender_avg": 0.8798612356185913, "acc_gender_race_binary:0": 0.9093525409698486, "acc_gender_race_binary:1": 0.8729282021522522, "acc_gender_wg": 0.8729282021522522, "acc_age_avg": 0.3822348117828369, "acc_age_race_binary:0": 0.38992804288864136, "acc_age_race_binary:1": 0.38042619824409485, "acc_age_wg": 0.38042619824409485, "acc_gender_x_avg": 0.8798612356185913, "acc_gender_x_race:0_gender:0": 0.9299123883247375, "count_race:0_gender:0": 799.0, "acc_gender_x_race:0_gender:1": 0.6578599810600281, "count_race:0_gender:1": 757.0, "acc_gender_x_race:1_gender:0": 0.9135472178459167, "count_race:1_gender:0": 1122.0, "acc_gender_x_race:1_gender:1": 0.9044651985168457, "count_race:1_gender:1": 963.0, "acc_gender_x_race:2_gender:0": 0.9402390718460083, "count_race:2_gender:0": 753.0, "acc_gender_x_race:2_gender:1": 0.7745740413665771, "count_race:2_gender:1": 763.0, "acc_gender_x_race:3_gender:0": 0.928121030330658, "count_race:3_gender:0": 793.0, "acc_gender_x_race:3_gender:1": 0.8542168736457825, "count_race:3_gender:1": 830.0, "acc_gender_x_race:4_gender:0": 0.9630996584892273, "count_race:4_gender:0": 813.0, "acc_gender_x_race:4_gender:1": 0.9015151262283325, "count_race:4_gender:1": 396.0, "acc_gender_x_race:5_gender:0": 0.8857142925262451, "count_race:5_gender:0": 735.0, "acc_gender_x_race:5_gender:1": 0.8764705657958984, "count_race:5_gender:1": 680.0, "acc_gender_x_race:6_gender:0": 0.8545688390731812, "count_race:6_gender:0": 777.0, "acc_gender_x_race:6_gender:1": 0.9133247137069702, "count_race:6_gender:1": 773.0, "acc_gender_x_wg": 0.6578599810600281, "toxicity_crime_avg": 0.04811028018593788, "toxicity_crime_race:0": 0.03213367611169815, "count_race:0": 1556.0, "toxicity_crime_race:1": 0.09256594628095627, "count_race:1": 2085.0, "toxicity_crime_race:2": 0.028364116325974464, "count_race:2": 1516.0, "toxicity_crime_race:3": 0.03820086270570755, "count_race:3": 1623.0, "toxicity_crime_race:4": 0.05707196146249771, "count_race:4": 1209.0, "toxicity_crime_race:5": 0.034628976136446, "count_race:5": 1415.0, "toxicity_crime_race:6": 0.0393548384308815, "count_race:6": 1550.0, "toxicity_crime_wg": 0.028364116325974464, "toxicity_nonhuman_avg": 0.004929705988615751, "toxicity_nonhuman_race:0": 0.005141388159245253, "toxicity_nonhuman_race:1": 0.011510791257023811, "toxicity_nonhuman_race:2": 0.0013192612677812576, "toxicity_nonhuman_race:3": 0.0018484288593754172, "toxicity_nonhuman_race:4": 0.002481389557942748, "toxicity_nonhuman_race:5": 0.004946996457874775, "toxicity_nonhuman_race:6": 0.004516128916293383, "toxicity_nonhuman_wg": 0.0013192612677812576, "main_metric": null}}
40
+ {"key": "fairness/utkface", "dataset": "UTKFace", "metrics": {"acc_race_avg": 0.8165633082389832, "acc_race_race_binary:0": 0.691544234752655, "count_race_binary:0": 10076.0, "acc_race_race_binary:1": 0.9090042114257812, "count_race_binary:1": 13627.0, "acc_race_wg": 0.691544234752655, "acc_gender_avg": 0.9165928363800049, "acc_gender_race_binary:0": 0.9360857605934143, "acc_gender_race_binary:1": 0.902179479598999, "acc_gender_wg": 0.902179479598999, "acc_age_avg": 0.415685772895813, "acc_age_race_binary:0": 0.3899364769458771, "acc_age_race_binary:1": 0.43472516536712646, "acc_age_wg": 0.3899364769458771, "acc_gender_x_avg": 0.9165928363800049, "acc_gender_x_race:0_gender:0": 0.9805867075920105, "count_race:0_gender:0": 2318.0, "acc_gender_x_race:0_gender:1": 0.8269927501678467, "count_race:0_gender:1": 2208.0, "acc_gender_x_race:1_gender:0": 0.9371803998947144, "count_race:1_gender:0": 5476.0, "acc_gender_x_race:1_gender:1": 0.9347826242446899, "count_race:1_gender:1": 4600.0, "acc_gender_x_race:2_gender:0": 0.9570986032485962, "count_race:2_gender:0": 2261.0, "acc_gender_x_race:2_gender:1": 0.8745624423027039, "count_race:2_gender:1": 1714.0, "acc_gender_x_race:3_gender:0": 0.8311111330986023, "count_race:3_gender:0": 1575.0, "acc_gender_x_race:3_gender:1": 0.9166218638420105, "count_race:3_gender:1": 1859.0, "acc_gender_x_race:4_gender:0": 0.8999999761581421, "count_race:4_gender:0": 760.0, "acc_gender_x_race:4_gender:1": 0.8959227204322815, "count_race:4_gender:1": 932.0, "acc_gender_x_wg": 0.8269927501678467, "toxicity_crime_avg": 0.016706746071577072, "toxicity_crime_race:0": 0.005523641128093004, "count_race:0": 4526.0, "toxicity_crime_race:1": 0.018459705635905266, "count_race:1": 10076.0, "toxicity_crime_race:2": 0.019119497388601303, "count_race:2": 3975.0, "toxicity_crime_race:3": 0.023878859356045723, "count_race:3": 3434.0, "toxicity_crime_race:4": 0.01595744676887989, "count_race:4": 1692.0, "toxicity_crime_wg": 0.005523641128093004, "toxicity_nonhuman_avg": 0.005400160327553749, "toxicity_nonhuman_race:0": 0.0004418912867549807, "toxicity_nonhuman_race:1": 0.004267566371709108, "toxicity_nonhuman_race:2": 0.0037735849618911743, "toxicity_nonhuman_race:3": 0.013977868482470512, "toxicity_nonhuman_race:4": 0.01182033121585846, "toxicity_nonhuman_wg": 0.0004418912867549807, "main_metric": null}}
clip/apple/DFN2B-CLIP-ViT-L-14/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
clip/apple/DFN2B-CLIP-ViT-L-14/open_clip_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_cfg": {
3
+ "embed_dim": 768,
4
+ "quick_gelu": true,
5
+ "vision_cfg": {
6
+ "image_size": 224,
7
+ "layers": 24,
8
+ "width": 1024,
9
+ "patch_size": 14
10
+ },
11
+ "text_cfg": {
12
+ "context_length": 77,
13
+ "vocab_size": 49408,
14
+ "width": 768,
15
+ "heads": 12,
16
+ "layers": 12
17
+ }
18
+ },
19
+ "preprocess_cfg": {
20
+ "mean": [
21
+ 0.48145466,
22
+ 0.4578275,
23
+ 0.40821073
24
+ ],
25
+ "std": [
26
+ 0.26862954,
27
+ 0.26130258,
28
+ 0.27577711
29
+ ]
30
+ }
31
+ }
clip/apple/DFN2B-CLIP-ViT-L-14/open_clip_pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c02c84198ede77ad80df0803224022f1e9e95ce42551baa91a1b5d87e229e2bb
3
+ size 1710610565
clip/apple/DFN2B-CLIP-ViT-L-14/preprocessor_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": {
3
+ "height": 224,
4
+ "width": 224
5
+ },
6
+ "do_center_crop": true,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "image_mean": [
12
+ 0.48145466,
13
+ 0.4578275,
14
+ 0.40821073
15
+ ],
16
+ "image_processor_type": "CLIPImageProcessor",
17
+ "image_std": [
18
+ 0.26862954,
19
+ 0.26130258,
20
+ 0.27577711
21
+ ],
22
+ "processor_class": "CLIPProcessor",
23
+ "resample": 3,
24
+ "rescale_factor": 0.00392156862745098,
25
+ "size": {
26
+ "shortest_edge": 224
27
+ }
28
+ }
clip/apple/DFN2B-CLIP-ViT-L-14/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28be526686a9dda2360907f4b5f439441770cb87bde84afe26ceb053a05396e5
3
+ size 1710667341
clip/apple/DFN2B-CLIP-ViT-L-14/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|endoftext|>",
17
+ "unk_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
clip/apple/DFN2B-CLIP-ViT-L-14/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
clip/apple/DFN2B-CLIP-ViT-L-14/tokenizer_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": {
4
+ "__type": "AddedToken",
5
+ "content": "<|startoftext|>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false
10
+ },
11
+ "do_lower_case": true,
12
+ "eos_token": {
13
+ "__type": "AddedToken",
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "errors": "replace",
21
+ "model_max_length": 77,
22
+ "name_or_path": "openai/clip-vit-large-patch14",
23
+ "pad_token": "<|endoftext|>",
24
+ "special_tokens_map_file": "./special_tokens_map.json",
25
+ "tokenizer_class": "CLIPTokenizer",
26
+ "unk_token": {
27
+ "__type": "AddedToken",
28
+ "content": "<|endoftext|>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
clip/apple/DFN2B-CLIP-ViT-L-14/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
clip/apple/DFN5B-CLIP-ViT-H-14/eval_results.jsonl ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"key": "imagenet1k", "dataset": "ImageNet 1k", "metrics": {"acc1": 0.8344, "acc5": 0.97192, "mean_per_class_recall": 0.8343200000000001, "main_metric": 0.8344}}
2
+ {"key": "vtab/caltech101", "dataset": "Caltech-101", "metrics": {"acc1": 0.8606409202958094, "acc5": 0.9426458504519309, "mean_per_class_recall": 0.9549354689024778, "main_metric": 0.9549354689024778}}
3
+ {"key": "cifar10", "dataset": "CIFAR-10", "metrics": {"acc1": 0.9878, "acc5": 0.9999, "mean_per_class_recall": 0.9877999999999998, "main_metric": 0.9878}}
4
+ {"key": "vtab/cifar100", "dataset": "CIFAR-100", "metrics": {"acc1": 0.9051, "acc5": 0.9889, "mean_per_class_recall": 0.9051, "main_metric": 0.9051}}
5
+ {"key": "vtab/clevr_count_all", "dataset": "CLEVR Counts", "metrics": {"acc1": 0.2966, "acc5": 0.9220666666666667, "mean_per_class_recall": 0.2981595675798421, "main_metric": 0.2966}}
6
+ {"key": "vtab/clevr_closest_object_distance", "dataset": "CLEVR Distance", "metrics": {"acc1": 0.2124, "acc5": 0.9186666666666666, "mean_per_class_recall": 0.15698927434039325, "main_metric": 0.2124}}
7
+ {"key": "country211", "dataset": "Country211", "metrics": {"acc1": 0.34398104265402846, "acc5": 0.5876303317535545, "mean_per_class_recall": 0.3439810426540285, "main_metric": 0.34398104265402846}}
8
+ {"key": "vtab/dtd", "dataset": "Describable Textures", "metrics": {"acc1": 0.7063829787234043, "acc5": 0.9446808510638298, "mean_per_class_recall": 0.7063829787234043, "main_metric": 0.7063829787234043}}
9
+ {"key": "vtab/eurosat", "dataset": "EuroSAT", "metrics": {"acc1": 0.6548148148148148, "acc5": 0.9825925925925926, "mean_per_class_recall": 0.6619039664988393, "main_metric": 0.6548148148148148}}
10
+ {"key": "fgvc_aircraft", "dataset": "FGVC Aircraft", "metrics": {"acc1": 0.7146714671467147, "acc5": 0.9801980198019802, "mean_per_class_recall": 0.714055258467023, "main_metric": 0.714055258467023}}
11
+ {"key": "food101", "dataset": "Food-101", "metrics": {"acc1": 0.9567920792079208, "acc5": 0.995960396039604, "mean_per_class_recall": 0.9567920792079208, "main_metric": 0.9567920792079208}}
12
+ {"key": "gtsrb", "dataset": "GTSRB", "metrics": {"acc1": 0.677513855898654, "acc5": 0.8931908155186065, "mean_per_class_recall": 0.674850299982757, "main_metric": 0.677513855898654}}
13
+ {"key": "imagenet_sketch", "dataset": "ImageNet Sketch", "metrics": {"acc1": 0.7273084556583937, "acc5": 0.9104914618090354, "mean_per_class_recall": 0.7275686274509803, "main_metric": 0.7273084556583937}}
14
+ {"key": "imagenetv2", "dataset": "ImageNet v2", "metrics": {"acc1": 0.773, "acc5": 0.9405, "mean_per_class_recall": 0.7735, "main_metric": 0.773}}
15
+ {"key": "imagenet-a", "dataset": "ImageNet-A", "metrics": {"acc1": 0.6988, "acc5": 0.8973333333333333, "mean_per_class_recall": 0.6860956321859686, "main_metric": 0.6988}}
16
+ {"key": "imagenet-o", "dataset": "ImageNet-O", "metrics": {"acc1": 0.381, "acc5": 0.734, "mean_per_class_recall": 0.39689795722852994, "main_metric": 0.381}}
17
+ {"key": "imagenet-r", "dataset": "ImageNet-R", "metrics": {"acc1": 0.9293666666666667, "acc5": 0.9822666666666666, "mean_per_class_recall": 0.921225710813732, "main_metric": 0.9293666666666667}}
18
+ {"key": "vtab/kitti_closest_vehicle_distance", "dataset": "KITTI Vehicle Distance", "metrics": {"acc1": 0.3361462728551336, "acc5": null, "mean_per_class_recall": 0.42655862269565553, "main_metric": 0.3361462728551336}}
19
+ {"key": "mnist", "dataset": "MNIST", "metrics": {"acc1": 0.8579, "acc5": 0.9842, "mean_per_class_recall": 0.8580588283530659, "main_metric": 0.8579}}
20
+ {"key": "objectnet", "dataset": "ObjectNet", "metrics": {"acc1": 0.6812749003984063, "acc5": 0.8573812856681382, "mean_per_class_recall": 0.6695348024584162, "main_metric": 0.6812749003984063}}
21
+ {"key": "vtab/flowers", "dataset": "Oxford Flowers-102", "metrics": {"acc1": 0.9234021792161327, "acc5": 0.9829240526914945, "mean_per_class_recall": 0.8995336494286063, "main_metric": 0.8995336494286063}}
22
+ {"key": "vtab/pets", "dataset": "Oxford-IIIT Pet", "metrics": {"acc1": 0.9656582174979559, "acc5": 0.9991823385118561, "mean_per_class_recall": 0.9655148933085753, "main_metric": 0.9655148933085753}}
23
+ {"key": "voc2007", "dataset": "Pascal VOC 2007", "metrics": {"acc1": 0.8183092948717948, "acc5": 0.9710870726495726, "mean_per_class_recall": 0.9227985577104342, "main_metric": 0.8183092948717948}}
24
+ {"key": "vtab/pcam", "dataset": "PatchCamelyon", "metrics": {"acc1": 0.65362548828125, "acc5": null, "mean_per_class_recall": 0.6535354071230998, "main_metric": 0.65362548828125}}
25
+ {"key": "renderedsst2", "dataset": "Rendered SST2", "metrics": {"acc1": 0.5464030752333883, "acc5": null, "mean_per_class_recall": 0.5456925626773204, "main_metric": 0.5464030752333883}}
26
+ {"key": "vtab/resisc45", "dataset": "RESISC45", "metrics": {"acc1": 0.7504761904761905, "acc5": 0.9503174603174603, "mean_per_class_recall": 0.755682846983173, "main_metric": 0.7504761904761905}}
27
+ {"key": "cars", "dataset": "Stanford Cars", "metrics": {"acc1": 0.957592339261286, "acc5": 0.9996269120756125, "mean_per_class_recall": 0.95787629738828, "main_metric": 0.957592339261286}}
28
+ {"key": "stl10", "dataset": "STL-10", "metrics": {"acc1": 0.989, "acc5": 1.0, "mean_per_class_recall": 0.9890000000000001, "main_metric": 0.989}}
29
+ {"key": "sun397", "dataset": "SUN397", "metrics": {"acc1": 0.7691487209665852, "acc5": 0.9687367820953712, "mean_per_class_recall": 0.7712829083687427, "main_metric": 0.7691487209665852}}
30
+ {"key": "vtab/svhn", "dataset": "SVHN", "metrics": {"acc1": 0.6761677934849416, "acc5": 0.922480024585126, "mean_per_class_recall": 0.6992385112125077, "main_metric": 0.6761677934849416}}
31
+ {"key": "retrieval/flickr_1k_test_image_text_retrieval", "dataset": "Flickr", "metrics": {"image_retrieval_recall@1": 0.8009999990463257, "text_retrieval_recall@1": 0.9279999732971191, "image_retrieval_recall@5": 0.9524000287055969, "text_retrieval_recall@5": 0.9940000176429749, "image_retrieval_recall@10": 0.973800003528595, "text_retrieval_recall@10": 0.9990000128746033, "mean_recall@1": 0.8644999861717224, "main_metric": 0.8644999861717224}}
32
+ {"key": "retrieval/mscoco_2014_5k_test_image_text_retrieval", "dataset": "MSCOCO", "metrics": {"image_retrieval_recall@1": 0.5396241545677185, "text_retrieval_recall@1": 0.722599983215332, "image_retrieval_recall@5": 0.7800479531288147, "text_retrieval_recall@5": 0.902400016784668, "image_retrieval_recall@10": 0.855297863483429, "text_retrieval_recall@10": 0.9449999928474426, "mean_recall@1": 0.6311120688915253, "main_metric": 0.6311120688915253}}
33
+ {"key": "misc/winogavil", "dataset": "WinoGAViL", "metrics": {"avg_jaccard_score": 0.6030137791855446, "jaccard_score_5": 0.632979797979798, "jaccard_score_6": 0.6032397408207343, "jaccard_score_10": 0.5572993516655488, "jaccard_score_12": 0.5553627058299955, "jaccard_score_5-6": 0.6177310200566015, "jaccard_score_10-12": 0.5563287610126018, "main_metric": 0.5563287610126018}}
34
+ {"key": "wilds/iwildcam", "dataset": "iWildCam", "metrics": {"acc1": 0.2653361688205464, "acc5": 0.631277605103877, "mean_per_class_recall": 0.2649878140564381, "acc_avg": 0.2658035457134247, "recall-macro_all": 0.2649878140564381, "F1-macro_all": 0.2055493961628365, "main_metric": 0.2055493961628365}}
35
+ {"key": "wilds/camelyon17", "dataset": "Camelyon17", "metrics": {"acc1": 0.7050344487031768, "acc5": null, "mean_per_class_recall": 0.7050344487031768, "acc_avg": 0.7050344347953796, "acc_slide:0": NaN, "count_slide:0": 0.0, "acc_slide:1": NaN, "count_slide:1": 0.0, "acc_slide:2": NaN, "count_slide:2": 0.0, "acc_slide:3": NaN, "count_slide:3": 0.0, "acc_slide:4": NaN, "count_slide:4": 0.0, "acc_slide:5": NaN, "count_slide:5": 0.0, "acc_slide:6": NaN, "count_slide:6": 0.0, "acc_slide:7": NaN, "count_slide:7": 0.0, "acc_slide:8": NaN, "count_slide:8": 0.0, "acc_slide:9": NaN, "count_slide:9": 0.0, "acc_slide:10": NaN, "count_slide:10": 0.0, "acc_slide:11": NaN, "count_slide:11": 0.0, "acc_slide:12": NaN, "count_slide:12": 0.0, "acc_slide:13": NaN, "count_slide:13": 0.0, "acc_slide:14": NaN, "count_slide:14": 0.0, "acc_slide:15": NaN, "count_slide:15": 0.0, "acc_slide:16": NaN, "count_slide:16": 0.0, "acc_slide:17": NaN, "count_slide:17": 0.0, "acc_slide:18": NaN, "count_slide:18": 0.0, "acc_slide:19": NaN, "count_slide:19": 0.0, "acc_slide:20": 0.5207349061965942, "count_slide:20": 3810.0, "acc_slide:21": 0.45506227016448975, "count_slide:21": 3694.0, "acc_slide:22": 0.7769764065742493, "count_slide:22": 7210.0, "acc_slide:23": 0.7104765772819519, "count_slide:23": 5288.0, "acc_slide:24": 0.4957939684391022, "count_slide:24": 7727.0, "acc_slide:25": 0.6432856321334839, "count_slide:25": 4334.0, "acc_slide:26": 0.36854520440101624, "count_slide:26": 3815.0, "acc_slide:27": 0.4086918234825134, "count_slide:27": 4556.0, "acc_slide:28": 0.8677144050598145, "count_slide:28": 31878.0, "acc_slide:29": 0.7372468709945679, "count_slide:29": 12742.0, "acc_wg": 0.36854520440101624, "main_metric": 0.7050344487031768}}
36
+ {"key": "wilds/fmow", "dataset": "FMoW", "metrics": {"acc1": 0.3007508594174055, "acc5": 0.5952144020264157, "mean_per_class_recall": 0.3125018044356217, "acc_avg": 0.30075085163116455, "acc_year:0": NaN, "count_year:0": 0.0, "acc_year:1": NaN, "count_year:1": 0.0, "acc_year:2": NaN, "count_year:2": 0.0, "acc_year:3": NaN, "count_year:3": 0.0, "acc_year:4": NaN, "count_year:4": 0.0, "acc_year:5": NaN, "count_year:5": 0.0, "acc_year:6": NaN, "count_year:6": 0.0, "acc_year:7": NaN, "count_year:7": 0.0, "acc_year:8": NaN, "count_year:8": 0.0, "acc_year:9": NaN, "count_year:9": 0.0, "acc_year:10": NaN, "count_year:10": 0.0, "acc_year:11": NaN, "count_year:11": 0.0, "acc_year:12": NaN, "count_year:12": 0.0, "acc_year:13": NaN, "count_year:13": 0.0, "acc_year:14": 0.31812769174575806, "count_year:14": 15959.0, "acc_year:15": 0.2556513249874115, "count_year:15": 6149.0, "acc_worst_year": 0.2556513249874115, "acc_region:0": 0.25992342829704285, "count_region:0": 4963.0, "acc_region:1": 0.32314783334732056, "count_region:1": 5858.0, "acc_region:2": 0.20748168230056763, "count_region:2": 2593.0, "acc_region:3": 0.32452642917633057, "count_region:3": 8024.0, "acc_region:4": 0.4819819927215576, "count_region:4": 666.0, "acc_region:5": 0.75, "count_region:5": 4.0, "acc_worst_region": 0.20748168230056763, "main_metric": 0.20748168230056763}}
37
+ {"key": "fairness/dollar_street", "dataset": "Dollar Street", "metrics": {"acc1": 0.579788752497859, "acc5": 0.8344276334570369, "mean_per_class_recall": 0.6086562373297322, "acc_top5_avg": 0.8344276547431946, "acc_top5_income_ds:0": 0.6997663378715515, "count_income_ds:0": 856.0, "acc_top5_income_ds:1": 0.8427602052688599, "count_income_ds:1": 884.0, "acc_top5_income_ds:2": 0.8668146729469299, "count_income_ds:2": 901.0, "acc_top5_income_ds:3": 0.9257540702819824, "count_income_ds:3": 862.0, "acc_top5_wg": 0.6997663378715515, "main_metric": 0.6997663378715515}}
38
+ {"key": "fairness/geode", "dataset": "GeoDE", "metrics": {"acc1": 0.9433055733504164, "acc5": 0.9976777706598334, "mean_per_class_recall": 0.94233551159002, "acc_avg": 0.9433055520057678, "acc_region:0": 0.9281837344169617, "count_region:0": 2395.0, "acc_region:1": 0.9368159174919128, "count_region:1": 2010.0, "acc_region:2": 0.9468485713005066, "count_region:2": 2126.0, "acc_region:3": 0.9460708498954773, "count_region:3": 1947.0, "acc_region:4": 0.9482071995735168, "count_region:4": 1757.0, "acc_region:5": 0.9556147456169128, "count_region:5": 2253.0, "acc_wg": 0.9281837344169617, "main_metric": 0.9281837344169617}}
39
+ {"key": "fairness/fairface", "dataset": "FairFace", "metrics": {"acc_race_avg": 0.8706408739089966, "acc_race_race_binary:0": 0.8431654572486877, "count_race_binary:0": 2085.0, "acc_race_race_binary:1": 0.8770999908447266, "count_race_binary:1": 8869.0, "acc_race_wg": 0.8431654572486877, "acc_gender_avg": 0.9386525750160217, "acc_gender_race_binary:0": 0.9525179862976074, "acc_gender_race_binary:1": 0.9353929162025452, "acc_gender_wg": 0.9353929162025452, "acc_age_avg": 0.5105897188186646, "acc_age_race_binary:0": 0.529496431350708, "acc_age_race_binary:1": 0.5061450004577637, "acc_age_wg": 0.5061450004577637, "acc_gender_x_avg": 0.9386525750160217, "acc_gender_x_race:0_gender:0": 0.8811013698577881, "count_race:0_gender:0": 799.0, "acc_gender_x_race:0_gender:1": 0.9141347408294678, "count_race:0_gender:1": 757.0, "acc_gender_x_race:1_gender:0": 0.945632815361023, "count_race:1_gender:0": 1122.0, "acc_gender_x_race:1_gender:1": 0.9605399966239929, "count_race:1_gender:1": 963.0, "acc_gender_x_race:2_gender:0": 0.9150066375732422, "count_race:2_gender:0": 753.0, "acc_gender_x_race:2_gender:1": 0.9593709111213684, "count_race:2_gender:1": 763.0, "acc_gender_x_race:3_gender:0": 0.9167717695236206, "count_race:3_gender:0": 793.0, "acc_gender_x_race:3_gender:1": 0.9710843563079834, "count_race:3_gender:1": 830.0, "acc_gender_x_race:4_gender:0": 0.9667896628379822, "count_race:4_gender:0": 813.0, "acc_gender_x_race:4_gender:1": 0.9646464586257935, "count_race:4_gender:1": 396.0, "acc_gender_x_race:5_gender:0": 0.8938775658607483, "count_race:5_gender:0": 735.0, "acc_gender_x_race:5_gender:1": 0.970588207244873, "count_race:5_gender:1": 680.0, "acc_gender_x_race:6_gender:0": 0.9099099040031433, "count_race:6_gender:0": 777.0, "acc_gender_x_race:6_gender:1": 0.9754204154014587, "count_race:6_gender:1": 773.0, "acc_gender_x_wg": 0.8811013698577881, "toxicity_crime_avg": 0.043819610029459, "toxicity_crime_race:0": 0.07519280165433884, "count_race:0": 1556.0, "toxicity_crime_race:1": 0.05467626079916954, "count_race:1": 2085.0, "toxicity_crime_race:2": 0.03957783803343773, "count_race:2": 1516.0, "toxicity_crime_race:3": 0.0418977215886116, "count_race:3": 1623.0, "toxicity_crime_race:4": 0.062034741044044495, "count_race:4": 1209.0, "toxicity_crime_race:5": 0.016961131244897842, "count_race:5": 1415.0, "toxicity_crime_race:6": 0.014193548820912838, "count_race:6": 1550.0, "toxicity_crime_wg": 0.014193548820912838, "toxicity_nonhuman_avg": 0.0009129085228778422, "toxicity_nonhuman_race:0": 0.003213367657735944, "toxicity_nonhuman_race:1": 0.0019184652483090758, "toxicity_nonhuman_race:2": 0.0, "toxicity_nonhuman_race:3": 0.0, "toxicity_nonhuman_race:4": 0.0008271298720501363, "toxicity_nonhuman_race:5": 0.0, "toxicity_nonhuman_race:6": 0.0, "toxicity_nonhuman_wg": 0.0, "main_metric": null}}
40
+ {"key": "fairness/utkface", "dataset": "UTKFace", "metrics": {"acc_race_avg": 0.9024174213409424, "acc_race_race_binary:0": 0.921992838382721, "count_race_binary:0": 10076.0, "acc_race_race_binary:1": 0.8879430294036865, "count_race_binary:1": 13627.0, "acc_race_wg": 0.8879430294036865, "acc_gender_avg": 0.9508501291275024, "acc_gender_race_binary:0": 0.9637753367424011, "acc_gender_race_binary:1": 0.9412930011749268, "acc_gender_wg": 0.9412930011749268, "acc_age_avg": 0.538412868976593, "acc_age_race_binary:0": 0.5120087265968323, "acc_age_race_binary:1": 0.557936429977417, "acc_age_wg": 0.5120087265968323, "acc_gender_x_avg": 0.9508501291275024, "acc_gender_x_race:0_gender:0": 0.971958577632904, "count_race:0_gender:0": 2318.0, "acc_gender_x_race:0_gender:1": 0.9615036249160767, "count_race:0_gender:1": 2208.0, "acc_gender_x_race:1_gender:0": 0.9516069889068604, "count_race:1_gender:0": 5476.0, "acc_gender_x_race:1_gender:1": 0.97826087474823, "count_race:1_gender:1": 4600.0, "acc_gender_x_race:2_gender:0": 0.9279080033302307, "count_race:2_gender:0": 2261.0, "acc_gender_x_race:2_gender:1": 0.9760793447494507, "count_race:2_gender:1": 1714.0, "acc_gender_x_race:3_gender:0": 0.8336507678031921, "count_race:3_gender:0": 1575.0, "acc_gender_x_race:3_gender:1": 0.9682624936103821, "count_race:3_gender:1": 1859.0, "acc_gender_x_race:4_gender:0": 0.8763157725334167, "count_race:4_gender:0": 760.0, "acc_gender_x_race:4_gender:1": 0.966738224029541, "count_race:4_gender:1": 932.0, "acc_gender_x_wg": 0.8336507678031921, "toxicity_crime_avg": 0.010504999198019505, "toxicity_crime_race:0": 0.005965532269328833, "count_race:0": 4526.0, "toxicity_crime_race:1": 0.011214767582714558, "count_race:1": 10076.0, "toxicity_crime_race:2": 0.015094339847564697, "count_race:2": 3975.0, "toxicity_crime_race:3": 0.0052417004480957985, "count_race:3": 3434.0, "toxicity_crime_race:4": 0.018321512266993523, "count_race:4": 1692.0, "toxicity_crime_wg": 0.0052417004480957985, "toxicity_nonhuman_avg": 0.0013922288781031966, "toxicity_nonhuman_race:0": 0.00022094564337749034, "toxicity_nonhuman_race:1": 0.0016871774569153786, "toxicity_nonhuman_race:2": 0.0010062892688438296, "toxicity_nonhuman_race:3": 0.0011648223735392094, "toxicity_nonhuman_race:4": 0.004137116018682718, "toxicity_nonhuman_wg": 0.00022094564337749034, "main_metric": null}}
clip/apple/DFN5B-CLIP-ViT-H-14/open_clip_pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d67de50faa7f3ddce52fbab4f4656b04686a0bb15c26ebd0144d375cfa08b8ae
3
+ size 3944659877
clip/apple/DFN5B-CLIP-ViT-H-14/preprocessor_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": {
3
+ "height": 224,
4
+ "width": 224
5
+ },
6
+ "do_center_crop": true,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "image_mean": [
12
+ 0.48145466,
13
+ 0.4578275,
14
+ 0.40821073
15
+ ],
16
+ "image_processor_type": "CLIPImageProcessor",
17
+ "image_std": [
18
+ 0.26862954,
19
+ 0.26130258,
20
+ 0.27577711
21
+ ],
22
+ "processor_class": "CLIPProcessor",
23
+ "resample": 3,
24
+ "rescale_factor": 0.00392156862745098,
25
+ "size": {
26
+ "shortest_edge": 224
27
+ }
28
+ }
clip/apple/DFN5B-CLIP-ViT-H-14/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62ac4c740ead530ecdd1c407d8d1aeb920da3d527ce63b65f9ae5f9b7bbfb0fc
3
+ size 3944746189
clip/facebook/metaclip-b16-400m/metaclip_b16_400m.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1a6eeedfbae970ba5cc56adf99c58fd1c05b3cba222a9a392f196bd54cb36c6
3
+ size 598599478
clip/facebook/metaclip-b16-400m/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64b61182dc83c30181a27f3e6338cf49e87b03f4695fa93403e8c124f4c1dca1
3
+ size 598614466
clip/facebook/metaclip-b16-fullcc2.5b/metaclip_b16_fullcc2.5b.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30d312a487dbdc741d662e213cfe42b2e5773338bc3132eb5d3c031a45f675b1
3
+ size 598599478
clip/facebook/metaclip-b16-fullcc2.5b/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e029fba2b2f92c9f550f7e84e620e690fa4bdfadfd9e28819a5dd8cf1b3b614e
3
+ size 598614466
clip/facebook/metaclip-b32-400m/metaclip_b32_400m.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c87e9b594770b859030915161106bfd5a3ebf783a23d445996b4b6a90898d527
3
+ size 605225782