Add files using upload-large-folder tool
Browse files- __pycache__/model.cpython-310.pyc +0 -0
- __pycache__/transformer.cpython-310.pyc +0 -0
- config.json +117 -1
- model.py +13 -4
- model_sanity_check.ipynb +170 -50
- transformer.py +33 -5
- zeroshot_classifier.pt +2 -2
__pycache__/model.cpython-310.pyc
CHANGED
Binary files a/__pycache__/model.cpython-310.pyc and b/__pycache__/model.cpython-310.pyc differ
|
|
__pycache__/transformer.cpython-310.pyc
CHANGED
Binary files a/__pycache__/transformer.cpython-310.pyc and b/__pycache__/transformer.cpython-310.pyc differ
|
|
config.json
CHANGED
@@ -22,7 +22,123 @@
|
|
22 |
"num_hidden_layers": 12,
|
23 |
"max_position_embeddings": 77
|
24 |
},
|
25 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
"projection_dim": 768,
|
27 |
"torch_dtype": "float32",
|
28 |
"transformers_version": "4.21.0"
|
|
|
22 |
"num_hidden_layers": 12,
|
23 |
"max_position_embeddings": 77
|
24 |
},
|
25 |
+
"num_register_tokens": 1,
|
26 |
+
"neuron_dict": {
|
27 |
+
"9": [
|
28 |
+
815,
|
29 |
+
4078,
|
30 |
+
3618,
|
31 |
+
2693,
|
32 |
+
3973,
|
33 |
+
1744,
|
34 |
+
1983,
|
35 |
+
1157,
|
36 |
+
1309,
|
37 |
+
1335,
|
38 |
+
2607,
|
39 |
+
2396,
|
40 |
+
3049,
|
41 |
+
1610,
|
42 |
+
2621,
|
43 |
+
2867,
|
44 |
+
2012,
|
45 |
+
1924,
|
46 |
+
2394,
|
47 |
+
3097,
|
48 |
+
3125,
|
49 |
+
3959,
|
50 |
+
3210,
|
51 |
+
2855,
|
52 |
+
3609,
|
53 |
+
526,
|
54 |
+
3362,
|
55 |
+
3395,
|
56 |
+
2626,
|
57 |
+
503,
|
58 |
+
2941,
|
59 |
+
3696,
|
60 |
+
1823,
|
61 |
+
2000,
|
62 |
+
129,
|
63 |
+
3667,
|
64 |
+
1372,
|
65 |
+
147,
|
66 |
+
1150,
|
67 |
+
852,
|
68 |
+
3222
|
69 |
+
],
|
70 |
+
"8": [
|
71 |
+
745,
|
72 |
+
3249,
|
73 |
+
2585,
|
74 |
+
1537,
|
75 |
+
200,
|
76 |
+
1603,
|
77 |
+
1851,
|
78 |
+
3523,
|
79 |
+
3697,
|
80 |
+
3137,
|
81 |
+
2563,
|
82 |
+
2293,
|
83 |
+
730,
|
84 |
+
906,
|
85 |
+
1528,
|
86 |
+
3348,
|
87 |
+
2438,
|
88 |
+
1564,
|
89 |
+
1540,
|
90 |
+
3238,
|
91 |
+
3606
|
92 |
+
],
|
93 |
+
"10": [
|
94 |
+
357,
|
95 |
+
1654,
|
96 |
+
3940,
|
97 |
+
2319,
|
98 |
+
2560,
|
99 |
+
2559,
|
100 |
+
4009,
|
101 |
+
3029,
|
102 |
+
951,
|
103 |
+
1903,
|
104 |
+
738,
|
105 |
+
1602,
|
106 |
+
1807,
|
107 |
+
2018,
|
108 |
+
1281,
|
109 |
+
267,
|
110 |
+
3539,
|
111 |
+
1015,
|
112 |
+
496,
|
113 |
+
693,
|
114 |
+
2278,
|
115 |
+
7,
|
116 |
+
856,
|
117 |
+
2785,
|
118 |
+
2690,
|
119 |
+
1367
|
120 |
+
],
|
121 |
+
"7": [
|
122 |
+
3228,
|
123 |
+
2550,
|
124 |
+
2977,
|
125 |
+
3716,
|
126 |
+
2467
|
127 |
+
],
|
128 |
+
"0": [
|
129 |
+
2890,
|
130 |
+
1779,
|
131 |
+
3761
|
132 |
+
],
|
133 |
+
"6": [
|
134 |
+
1042,
|
135 |
+
2315,
|
136 |
+
1674
|
137 |
+
],
|
138 |
+
"3": [
|
139 |
+
410
|
140 |
+
]
|
141 |
+
},
|
142 |
"projection_dim": 768,
|
143 |
"torch_dtype": "float32",
|
144 |
"transformers_version": "4.21.0"
|
model.py
CHANGED
@@ -270,14 +270,23 @@ class CLIP(nn.Module):
|
|
270 |
self.visual.set_grad_checkpointing(enable)
|
271 |
self.transformer.grad_checkpointing = enable
|
272 |
|
273 |
-
def encode_image(self, image, normalize: bool = False, attn_method: Text = 'direct', num_register_tokens = None, neuron_dict=None):
|
274 |
if num_register_tokens is None and neuron_dict is None:
|
275 |
num_register_tokens = self.num_register_tokens
|
276 |
neuron_dict = self.neuron_dict
|
277 |
-
|
278 |
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
282 |
def encode_text(self, text, normalize: bool = False):
|
283 |
cast_dtype = self.transformer.get_cast_dtype()
|
|
|
270 |
self.visual.set_grad_checkpointing(enable)
|
271 |
self.transformer.grad_checkpointing = enable
|
272 |
|
273 |
+
def encode_image(self, image, normalize: bool = False, attn_method: Text = 'direct', num_register_tokens = None, neuron_dict=None, get_hidden_states=False):
|
274 |
if num_register_tokens is None and neuron_dict is None:
|
275 |
num_register_tokens = self.num_register_tokens
|
276 |
neuron_dict = self.neuron_dict
|
|
|
277 |
|
278 |
+
if get_hidden_states:
|
279 |
+
ret = self.visual(image, attn_method=attn_method, num_register_tokens=num_register_tokens, neuron_dict=neuron_dict, get_hidden_states=get_hidden_states)
|
280 |
+
# warning only global cls token noramlized
|
281 |
+
return {
|
282 |
+
"pooled": F.normalize(ret["pooled"], dim=-1) if normalize else ret["pooled"],
|
283 |
+
"tokens": ret["tokens"],
|
284 |
+
"hidden_states": ret["hidden_states"]
|
285 |
+
}
|
286 |
+
else:
|
287 |
+
features = self.visual(image, attn_method=attn_method, num_register_tokens=num_register_tokens, neuron_dict=neuron_dict)
|
288 |
+
return F.normalize(features, dim=-1) if normalize else features
|
289 |
+
|
290 |
|
291 |
def encode_text(self, text, normalize: bool = False):
|
292 |
cast_dtype = self.transformer.get_cast_dtype()
|
model_sanity_check.ipynb
CHANGED
@@ -13,7 +13,7 @@
|
|
13 |
},
|
14 |
{
|
15 |
"cell_type": "code",
|
16 |
-
"execution_count":
|
17 |
"id": "e7cec94e",
|
18 |
"metadata": {},
|
19 |
"outputs": [],
|
@@ -65,7 +65,7 @@
|
|
65 |
},
|
66 |
{
|
67 |
"cell_type": "code",
|
68 |
-
"execution_count":
|
69 |
"id": "b4c7a750",
|
70 |
"metadata": {},
|
71 |
"outputs": [
|
@@ -77,6 +77,7 @@
|
|
77 |
"โ Added '/workspace/code/clipL336_TTR' to Python path.\n",
|
78 |
"โ Successfully imported 'model' from '/workspace/code/clipL336_TTR'\n",
|
79 |
"Building vision tower with config: CLIPVisionCfg(layers=24, width=1024, head_width=64, mlp_ratio=4.0, patch_size=14, image_size=336, ls_init_value=None, patch_dropout=0.0, input_patchnorm=False, global_average_pool=False, attentional_pool=False, n_queries=256, attn_pooler_heads=8, output_tokens=False, timm_model_name=None, timm_model_pretrained=False, timm_pool='avg', timm_proj='linear', timm_proj_bias=False, timm_drop=0.0, timm_drop_path=None)\n",
|
|
|
80 |
"โ Added '/workspace/data/cache/huggingface/modules/transformers_modules/clipL336_TTR' to Python path.\n",
|
81 |
"โ Successfully imported 'tokenizer' from '/workspace/data/cache/huggingface/modules/transformers_modules/clipL336_TTR'\n",
|
82 |
"Custom CLIP model loaded successfully!\n"
|
@@ -104,7 +105,7 @@
|
|
104 |
},
|
105 |
{
|
106 |
"cell_type": "code",
|
107 |
-
"execution_count":
|
108 |
"id": "ed3cbfdc",
|
109 |
"metadata": {},
|
110 |
"outputs": [
|
@@ -112,7 +113,7 @@
|
|
112 |
"name": "stderr",
|
113 |
"output_type": "stream",
|
114 |
"text": [
|
115 |
-
"100%|โโโโโโโโโโ| 1000/1000 [00:23<00:00, 41.
|
116 |
]
|
117 |
},
|
118 |
{
|
@@ -133,36 +134,29 @@
|
|
133 |
"source": [
|
134 |
"# langauge head\n",
|
135 |
"### zeroshot head construction (text encoding) ###\n",
|
136 |
-
"
|
137 |
-
"
|
138 |
-
"
|
139 |
-
"
|
140 |
-
"
|
141 |
-
"
|
142 |
-
"
|
143 |
-
"
|
144 |
-
"
|
145 |
-
"
|
146 |
-
"
|
147 |
-
"
|
148 |
-
"
|
149 |
-
"
|
150 |
-
"
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
"cell_type": "code",
|
155 |
-
"execution_count": 10,
|
156 |
-
"id": "e1bd37d1",
|
157 |
-
"metadata": {},
|
158 |
-
"outputs": [],
|
159 |
-
"source": [
|
160 |
-
"torch.save(text_features, \"./zeroshot_classifier.pt\")"
|
161 |
]
|
162 |
},
|
163 |
{
|
164 |
"cell_type": "code",
|
165 |
-
"execution_count":
|
166 |
"id": "dbfeaedf",
|
167 |
"metadata": {},
|
168 |
"outputs": [],
|
@@ -173,7 +167,7 @@
|
|
173 |
},
|
174 |
{
|
175 |
"cell_type": "code",
|
176 |
-
"execution_count":
|
177 |
"id": "b0000195",
|
178 |
"metadata": {},
|
179 |
"outputs": [],
|
@@ -204,44 +198,170 @@
|
|
204 |
" return top1 / n * 100, top5 / n * 100\n"
|
205 |
]
|
206 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
{
|
208 |
"cell_type": "code",
|
209 |
"execution_count": 8,
|
210 |
-
"id": "
|
211 |
"metadata": {},
|
212 |
"outputs": [
|
213 |
{
|
214 |
-
"
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
{
|
221 |
-
"
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
{
|
228 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
"output_type": "stream",
|
230 |
"text": [
|
231 |
-
"
|
232 |
]
|
233 |
},
|
234 |
{
|
235 |
-
"
|
236 |
-
"
|
237 |
-
"
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
239 |
]
|
240 |
}
|
241 |
],
|
242 |
"source": [
|
243 |
"\n",
|
244 |
"### baseline evaluator ###\n",
|
|
|
|
|
|
|
|
|
245 |
"\n",
|
246 |
"BASELINE_SAMPLES = 50000 # set to None for full 50โฏk\n",
|
247 |
"acc1, acc5 = evaluate(model, eval_loader, text_features, max_samples=BASELINE_SAMPLES)\n",
|
|
|
13 |
},
|
14 |
{
|
15 |
"cell_type": "code",
|
16 |
+
"execution_count": 1,
|
17 |
"id": "e7cec94e",
|
18 |
"metadata": {},
|
19 |
"outputs": [],
|
|
|
65 |
},
|
66 |
{
|
67 |
"cell_type": "code",
|
68 |
+
"execution_count": 2,
|
69 |
"id": "b4c7a750",
|
70 |
"metadata": {},
|
71 |
"outputs": [
|
|
|
77 |
"โ Added '/workspace/code/clipL336_TTR' to Python path.\n",
|
78 |
"โ Successfully imported 'model' from '/workspace/code/clipL336_TTR'\n",
|
79 |
"Building vision tower with config: CLIPVisionCfg(layers=24, width=1024, head_width=64, mlp_ratio=4.0, patch_size=14, image_size=336, ls_init_value=None, patch_dropout=0.0, input_patchnorm=False, global_average_pool=False, attentional_pool=False, n_queries=256, attn_pooler_heads=8, output_tokens=False, timm_model_name=None, timm_model_pretrained=False, timm_pool='avg', timm_proj='linear', timm_proj_bias=False, timm_drop=0.0, timm_drop_path=None)\n",
|
80 |
+
"Currently text tower is removed, using only image encoder for feature extraction\n",
|
81 |
"โ Added '/workspace/data/cache/huggingface/modules/transformers_modules/clipL336_TTR' to Python path.\n",
|
82 |
"โ Successfully imported 'tokenizer' from '/workspace/data/cache/huggingface/modules/transformers_modules/clipL336_TTR'\n",
|
83 |
"Custom CLIP model loaded successfully!\n"
|
|
|
105 |
},
|
106 |
{
|
107 |
"cell_type": "code",
|
108 |
+
"execution_count": 3,
|
109 |
"id": "ed3cbfdc",
|
110 |
"metadata": {},
|
111 |
"outputs": [
|
|
|
113 |
"name": "stderr",
|
114 |
"output_type": "stream",
|
115 |
"text": [
|
116 |
+
"100%|โโโโโโโโโโ| 1000/1000 [00:23<00:00, 41.78it/s]"
|
117 |
]
|
118 |
},
|
119 |
{
|
|
|
134 |
"source": [
|
135 |
"# langauge head\n",
|
136 |
"### zeroshot head construction (text encoding) ###\n",
|
137 |
+
"construction_language_cls_head = True\n",
|
138 |
+
"\n",
|
139 |
+
"if construction_language_cls_head:\n",
|
140 |
+
" with torch.no_grad():\n",
|
141 |
+
" zeroshot_weight = []\n",
|
142 |
+
" for classname in tqdm(IMAGENET_CLASSNAMES):\n",
|
143 |
+
" texts = [template(classname) for template in OPENAI_IMAGENET_TEMPLATES]\n",
|
144 |
+
" text_inputs = preprocessor(text=texts, return_tensors=\"pt\", padding=\"max_length\").to(device)\n",
|
145 |
+
" # text_inputs = model.tokenize(texts).to(device)\n",
|
146 |
+
" # text_features = model.encode_text(text_inputs.input_ids)\n",
|
147 |
+
" text_features = model_clip.get_text_features(**text_inputs)\n",
|
148 |
+
" text_feature = F.normalize(text_features, dim=-1).mean(dim=0)\n",
|
149 |
+
" # text_feature = text_features.mean(dim=0)\n",
|
150 |
+
" text_feature = text_feature / text_feature.norm()\n",
|
151 |
+
" zeroshot_weight.append(text_feature)\n",
|
152 |
+
" \n",
|
153 |
+
" text_features = torch.stack(zeroshot_weight, dim=1).to(device)\n",
|
154 |
+
" print(\"Built text features:\", text_features.shape)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
]
|
156 |
},
|
157 |
{
|
158 |
"cell_type": "code",
|
159 |
+
"execution_count": 4,
|
160 |
"id": "dbfeaedf",
|
161 |
"metadata": {},
|
162 |
"outputs": [],
|
|
|
167 |
},
|
168 |
{
|
169 |
"cell_type": "code",
|
170 |
+
"execution_count": 5,
|
171 |
"id": "b0000195",
|
172 |
"metadata": {},
|
173 |
"outputs": [],
|
|
|
198 |
" return top1 / n * 100, top5 / n * 100\n"
|
199 |
]
|
200 |
},
|
201 |
+
{
|
202 |
+
"cell_type": "code",
|
203 |
+
"execution_count": 6,
|
204 |
+
"id": "5806f422",
|
205 |
+
"metadata": {},
|
206 |
+
"outputs": [],
|
207 |
+
"source": [
|
208 |
+
"model = model.half().to(device)"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "code",
|
213 |
+
"execution_count": 7,
|
214 |
+
"id": "21372f58",
|
215 |
+
"metadata": {},
|
216 |
+
"outputs": [],
|
217 |
+
"source": [
|
218 |
+
"sample_image = imagenet_dataset[0][0].unsqueeze(0).half().to(device)\n",
|
219 |
+
"result = model.encode_image(sample_image, get_hidden_states=True) # test\n",
|
220 |
+
"# ์ด๊ฑฐ ๊ทธ๋๋ก ์ด์ foward"
|
221 |
+
]
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"cell_type": "code",
|
225 |
+
"execution_count": 16,
|
226 |
+
"id": "741d9cac",
|
227 |
+
"metadata": {},
|
228 |
+
"outputs": [],
|
229 |
+
"source": [
|
230 |
+
"vision_forward_result = model_clip.vision_model(pixel_values=sample_image, output_hidden_states=True)"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"cell_type": "code",
|
235 |
+
"execution_count": 20,
|
236 |
+
"id": "c3dd134e",
|
237 |
+
"metadata": {},
|
238 |
+
"outputs": [
|
239 |
+
{
|
240 |
+
"data": {
|
241 |
+
"text/plain": [
|
242 |
+
"torch.Size([1, 577, 1024])"
|
243 |
+
]
|
244 |
+
},
|
245 |
+
"execution_count": 20,
|
246 |
+
"metadata": {},
|
247 |
+
"output_type": "execute_result"
|
248 |
+
}
|
249 |
+
],
|
250 |
+
"source": [
|
251 |
+
"vision_forward_result.hidden_states[0].shape\n",
|
252 |
+
"# ์ฌ๊ธฐ์๋ 25์ด๋ค."
|
253 |
+
]
|
254 |
+
},
|
255 |
{
|
256 |
"cell_type": "code",
|
257 |
"execution_count": 8,
|
258 |
+
"id": "04d16694",
|
259 |
"metadata": {},
|
260 |
"outputs": [
|
261 |
{
|
262 |
+
"data": {
|
263 |
+
"text/plain": [
|
264 |
+
"dict_keys(['pooled', 'tokens', 'hidden_states'])"
|
265 |
+
]
|
266 |
+
},
|
267 |
+
"execution_count": 8,
|
268 |
+
"metadata": {},
|
269 |
+
"output_type": "execute_result"
|
270 |
+
}
|
271 |
+
],
|
272 |
+
"source": [
|
273 |
+
"result.keys()\n",
|
274 |
+
"# ํ๋๋ง ๋ ํ์ธํ๊ธฐ CLS token์ ๋ถ์ด๋ ๊ฐ ์๋๊ฐ?"
|
275 |
+
]
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"cell_type": "code",
|
279 |
+
"execution_count": 9,
|
280 |
+
"id": "36c68c45",
|
281 |
+
"metadata": {},
|
282 |
+
"outputs": [
|
283 |
{
|
284 |
+
"data": {
|
285 |
+
"text/plain": [
|
286 |
+
"torch.Size([1, 578, 1024])"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
"execution_count": 9,
|
290 |
+
"metadata": {},
|
291 |
+
"output_type": "execute_result"
|
292 |
+
}
|
293 |
+
],
|
294 |
+
"source": [
|
295 |
+
"# ํ ์ํฉ์ ๋ณด๋ฉด register token์ ์ ๋ค์ด๊ฐ ๊ฐ ๊ฒ์ ๋ณผ ์ ์๋ค.\n",
|
296 |
+
"result[\"hidden_states\"][0].shape"
|
297 |
+
]
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"cell_type": "code",
|
301 |
+
"execution_count": null,
|
302 |
+
"id": "d9f06ec5",
|
303 |
+
"metadata": {},
|
304 |
+
"outputs": [
|
305 |
{
|
306 |
+
"data": {
|
307 |
+
"text/plain": [
|
308 |
+
"1"
|
309 |
+
]
|
310 |
+
},
|
311 |
+
"execution_count": 12,
|
312 |
+
"metadata": {},
|
313 |
+
"output_type": "execute_result"
|
314 |
+
}
|
315 |
+
],
|
316 |
+
"source": [
|
317 |
+
"model.num_register_tokens\n",
|
318 |
+
"# ok, hidden state ๋ฃ์ด์ค ๋, layer_idx, ๊ทธ๋ฆฌ๊ณ num_register ์ ์ธ์งํด์, parsing์ ํด์ฃผ๋๋ก ํด์ผ ๊ฒ ๋ค.\n",
|
319 |
+
"# model.neuron_dict"
|
320 |
+
]
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"cell_type": "code",
|
324 |
+
"execution_count": null,
|
325 |
+
"id": "4504ccd6",
|
326 |
+
"metadata": {},
|
327 |
+
"outputs": [],
|
328 |
+
"source": [
|
329 |
+
"raise StopIteration()"
|
330 |
+
]
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"cell_type": "code",
|
334 |
+
"execution_count": 10,
|
335 |
+
"id": "8795b394",
|
336 |
+
"metadata": {},
|
337 |
+
"outputs": [
|
338 |
+
{
|
339 |
+
"name": "stderr",
|
340 |
"output_type": "stream",
|
341 |
"text": [
|
342 |
+
"Evaluating: 2%|โ | 6/391 [00:13<14:35, 2.27s/batch, samples=768, top1=89.1, top5=98.3]\n"
|
343 |
]
|
344 |
},
|
345 |
{
|
346 |
+
"ename": "KeyboardInterrupt",
|
347 |
+
"evalue": "",
|
348 |
+
"output_type": "error",
|
349 |
+
"traceback": [
|
350 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
351 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
352 |
+
"Cell \u001b[0;32mIn[10], line 8\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m### baseline evaluator ###\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;66;03m### ์ด๊ฑฐ๋ ์ง๊ธ ๋น์ฅ์ ๋ชป ์จ๋จน๋๋ค... ๋ฏธ์น ๋๋ฌด ๋๋ฆฌ๋ค ์ด๋์ ๋ฌธ์ ์ง ###\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# ์จ๋ฐ ์ด๋ฒ์ ๋ญ์ง\u001b[39;00m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# architecture define์ด ์ด๋๊ฐ์์ ์์ ๋ ๊ฒ์ผ๋ก ๋ณด์ธ๋ค\u001b[39;00m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# ์ฑ๋ฅ reproduce...\u001b[39;00m\n\u001b[1;32m 7\u001b[0m BASELINE_SAMPLES \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m50000\u001b[39m \u001b[38;5;66;03m# set to None for full 50โฏk\u001b[39;00m\n\u001b[0;32m----> 8\u001b[0m acc1, acc5 \u001b[38;5;241m=\u001b[39m \u001b[43mevaluate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43meval_loader\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtext_features\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_samples\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mBASELINE_SAMPLES\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mBaseline (Topโ1 / Topโ5) on \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mBASELINE_SAMPLES\u001b[38;5;250m \u001b[39m\u001b[38;5;129;01mor\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28mlen\u001b[39m(imagenet_dataset)\u001b[38;5;132;01m:\u001b[39;00m\u001b[38;5;124m,\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m imgs: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00macc1\u001b[38;5;132;01m:\u001b[39;00m\u001b[38;5;124m.2f\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m% / \u001b[39m\u001b[38;5;132;01m{\u001b[39;00macc5\u001b[38;5;132;01m:\u001b[39;00m\u001b[38;5;124m.2f\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
353 |
+
"Cell \u001b[0;32mIn[5], line 20\u001b[0m, in \u001b[0;36mevaluate\u001b[0;34m(model, loader, text_feats, max_samples)\u001b[0m\n\u001b[1;32m 18\u001b[0m logits \u001b[38;5;241m=\u001b[39m model\u001b[38;5;241m.\u001b[39mmodel\u001b[38;5;241m.\u001b[39mlogit_scale\u001b[38;5;241m.\u001b[39mexp() \u001b[38;5;241m*\u001b[39m feats \u001b[38;5;241m@\u001b[39m text_feats \n\u001b[1;32m 19\u001b[0m _, pred \u001b[38;5;241m=\u001b[39m logits\u001b[38;5;241m.\u001b[39mtopk(\u001b[38;5;241m5\u001b[39m, dim\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[0;32m---> 20\u001b[0m top1 \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[43m(\u001b[49m\u001b[43mpred\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m:\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mlabels\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43munsqueeze\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msum\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mitem\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 21\u001b[0m top5 \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m (pred \u001b[38;5;241m==\u001b[39m labels\u001b[38;5;241m.\u001b[39munsqueeze(\u001b[38;5;241m1\u001b[39m))\u001b[38;5;241m.\u001b[39msum()\u001b[38;5;241m.\u001b[39mitem()\n\u001b[1;32m 22\u001b[0m n \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m images\u001b[38;5;241m.\u001b[39msize(\u001b[38;5;241m0\u001b[39m)\n",
|
354 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
|
355 |
]
|
356 |
}
|
357 |
],
|
358 |
"source": [
|
359 |
"\n",
|
360 |
"### baseline evaluator ###\n",
|
361 |
+
"### ์ด๊ฑฐ๋ ์ง๊ธ ๋น์ฅ์ ๋ชป ์จ๋จน๋๋ค... ๋ฏธ์น ๋๋ฌด ๋๋ฆฌ๋ค ์ด๋์ ๋ฌธ์ ์ง ###\n",
|
362 |
+
"# ์จ๋ฐ ์ด๋ฒ์ ๋ญ์ง\n",
|
363 |
+
"# architecture define์ด ์ด๋๊ฐ์์ ์์ ๋ ๊ฒ์ผ๋ก ๋ณด์ธ๋ค\n",
|
364 |
+
"# ์ฑ๋ฅ reproduce...\n",
|
365 |
"\n",
|
366 |
"BASELINE_SAMPLES = 50000 # set to None for full 50โฏk\n",
|
367 |
"acc1, acc5 = evaluate(model, eval_loader, text_features, max_samples=BASELINE_SAMPLES)\n",
|
transformer.py
CHANGED
@@ -560,8 +560,12 @@ class Transformer(nn.Module):
|
|
560 |
attn_mask: Optional[torch.Tensor] = None,
|
561 |
attn_method: Text = "direct",
|
562 |
neuron_dict=None,
|
563 |
-
num_register_tokens=0
|
564 |
-
|
|
|
|
|
|
|
|
|
565 |
for r in self.resblocks:
|
566 |
if self.grad_checkpointing and not torch.jit.is_scripting():
|
567 |
raise ValueError("grad_checkpointing not implemented")
|
@@ -573,7 +577,16 @@ class Transformer(nn.Module):
|
|
573 |
neuron_dict=neuron_dict,
|
574 |
num_register_tokens=num_register_tokens
|
575 |
)
|
576 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
577 |
|
578 |
|
579 |
class VisionTransformer(nn.Module):
|
@@ -672,7 +685,8 @@ class VisionTransformer(nn.Module):
|
|
672 |
else:
|
673 |
return x[:, 0], x[:, 1:]
|
674 |
|
675 |
-
|
|
|
676 |
# to patches
|
677 |
|
678 |
if num_register_tokens is None and neuron_dict is None:
|
@@ -725,7 +739,14 @@ class VisionTransformer(nn.Module):
|
|
725 |
x = self.patch_dropout(x)
|
726 |
x = self.ln_pre(x)
|
727 |
|
728 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
729 |
|
730 |
if self.attn_pool is not None:
|
731 |
x = self.attn_pool(x)
|
@@ -740,6 +761,13 @@ class VisionTransformer(nn.Module):
|
|
740 |
|
741 |
if self.output_tokens:
|
742 |
return pooled, tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
743 |
|
744 |
return pooled
|
745 |
|
|
|
560 |
attn_mask: Optional[torch.Tensor] = None,
|
561 |
attn_method: Text = "direct",
|
562 |
neuron_dict=None,
|
563 |
+
num_register_tokens=0,
|
564 |
+
get_hidden_states: bool = False,
|
565 |
+
):
|
566 |
+
if "hidden_states" not in locals():
|
567 |
+
hidden_states = []
|
568 |
+
hidden_states.append(x) # input embedding ์ ์ฅ
|
569 |
for r in self.resblocks:
|
570 |
if self.grad_checkpointing and not torch.jit.is_scripting():
|
571 |
raise ValueError("grad_checkpointing not implemented")
|
|
|
577 |
neuron_dict=neuron_dict,
|
578 |
num_register_tokens=num_register_tokens
|
579 |
)
|
580 |
+
if get_hidden_states:
|
581 |
+
hidden_states.append(x)
|
582 |
+
|
583 |
+
if get_hidden_states:
|
584 |
+
return {
|
585 |
+
"hidden_states": hidden_states,
|
586 |
+
"last_hidden_state": x,
|
587 |
+
}
|
588 |
+
else:
|
589 |
+
return x
|
590 |
|
591 |
|
592 |
class VisionTransformer(nn.Module):
|
|
|
685 |
else:
|
686 |
return x[:, 0], x[:, 1:]
|
687 |
|
688 |
+
# ์ฌ๊ธฐ์
|
689 |
+
def forward(self, x: torch.Tensor, attn_method: Text = "direct", num_register_tokens = None, neuron_dict=None, get_hidden_states:bool=False):
|
690 |
# to patches
|
691 |
|
692 |
if num_register_tokens is None and neuron_dict is None:
|
|
|
739 |
x = self.patch_dropout(x)
|
740 |
x = self.ln_pre(x)
|
741 |
|
742 |
+
# ์ฌ๊ธฐ์ ๋ค์ด๊ฐ๋ ๊ฒ์ [B, 1+ 576 + num_register_tokens, C]
|
743 |
+
if get_hidden_states:
|
744 |
+
ret = self.transformer(x, attn_mask=None, attn_method=attn_method, neuron_dict=neuron_dict, num_register_tokens=num_register_tokens,get_hidden_states=get_hidden_states)
|
745 |
+
|
746 |
+
hidden_states = ret["hidden_states"]
|
747 |
+
x = ret["last_hidden_state"]
|
748 |
+
else:
|
749 |
+
x = self.transformer(x, attn_mask=None, attn_method=attn_method, neuron_dict=neuron_dict, num_register_tokens=num_register_tokens,get_hidden_states=get_hidden_states)
|
750 |
|
751 |
if self.attn_pool is not None:
|
752 |
x = self.attn_pool(x)
|
|
|
761 |
|
762 |
if self.output_tokens:
|
763 |
return pooled, tokens
|
764 |
+
|
765 |
+
if get_hidden_states:
|
766 |
+
return {
|
767 |
+
"pooled": pooled, # GLOBAL CLS
|
768 |
+
"tokens": tokens, # ALL TOKENS
|
769 |
+
"hidden_states": hidden_states # layer-wise hidden states
|
770 |
+
}
|
771 |
|
772 |
return pooled
|
773 |
|
zeroshot_classifier.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:629c9c73b717ffa38a56f57b20ebe4fd5470cc03d730f7919c2bacf2c388f560
|
3 |
+
size 124120
|